![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oun | Structured version Visualization version GIF version |
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.) |
Ref | Expression |
---|---|
f1oun | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 6183 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
2 | dff1o4 6183 | . . . 4 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) | |
3 | fnun 6035 | . . . . . . 7 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
4 | 3 | ex 449 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) → ((𝐴 ∩ 𝐶) = ∅ → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶))) |
5 | fnun 6035 | . . . . . . . 8 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) | |
6 | cnvun 5573 | . . . . . . . . 9 ⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) | |
7 | 6 | fneq1i 6023 | . . . . . . . 8 ⊢ (◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷) ↔ (◡𝐹 ∪ ◡𝐺) Fn (𝐵 ∪ 𝐷)) |
8 | 5, 7 | sylibr 224 | . . . . . . 7 ⊢ (((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)) |
9 | 8 | ex 449 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) |
10 | 4, 9 | im2anan9 898 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (◡𝐹 Fn 𝐵 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
11 | 10 | an4s 886 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵) ∧ (𝐺 Fn 𝐶 ∧ ◡𝐺 Fn 𝐷)) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
12 | 1, 2, 11 | syl2anb 495 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷)))) |
13 | dff1o4 6183 | . . 3 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ◡(𝐹 ∪ 𝐺) Fn (𝐵 ∪ 𝐷))) | |
14 | 12, 13 | syl6ibr 242 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) → (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷))) |
15 | 14 | imp 444 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷) ∧ ((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–1-1-onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 ◡ccnv 5142 Fn wfn 5921 –1-1-onto→wf1o 5925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 |
This theorem is referenced by: f1oprg 6219 fveqf1o 6597 oacomf1o 7690 unen 8081 enfixsn 8110 domss2 8160 isinf 8214 marypha1lem 8380 hashf1lem1 13277 f1oun2prg 13708 eupthp1 27194 isoun 29607 subfacp1lem2a 31288 subfacp1lem5 31292 poimirlem3 33542 poimirlem15 33554 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 eldioph2lem1 37640 eldioph2lem2 37641 |
Copyright terms: Public domain | W3C validator |