Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqv Structured version   Visualization version   GIF version

Theorem fineqv 8160
 Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.)
Assertion
Ref Expression
fineqv (¬ ω ∈ V ↔ Fin = V)

Proof of Theorem fineqv
StepHypRef Expression
1 ssv 3617 . . . 4 Fin ⊆ V
21a1i 11 . . 3 (¬ ω ∈ V → Fin ⊆ V)
3 vex 3198 . . . . . . . 8 𝑎 ∈ V
4 fineqvlem 8159 . . . . . . . 8 ((𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin) → ω ≼ 𝒫 𝒫 𝑎)
53, 4mpan 705 . . . . . . 7 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎)
6 reldom 7946 . . . . . . . 8 Rel ≼
76brrelexi 5148 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V)
85, 7syl 17 . . . . . 6 𝑎 ∈ Fin → ω ∈ V)
98con1i 144 . . . . 5 (¬ ω ∈ V → 𝑎 ∈ Fin)
109a1d 25 . . . 4 (¬ ω ∈ V → (𝑎 ∈ V → 𝑎 ∈ Fin))
1110ssrdv 3601 . . 3 (¬ ω ∈ V → V ⊆ Fin)
122, 11eqssd 3612 . 2 (¬ ω ∈ V → Fin = V)
13 ominf 8157 . . 3 ¬ ω ∈ Fin
14 eleq2 2688 . . 3 (Fin = V → (ω ∈ Fin ↔ ω ∈ V))
1513, 14mtbii 316 . 2 (Fin = V → ¬ ω ∈ V)
1612, 15impbii 199 1 (¬ ω ∈ V ↔ Fin = V)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   = wceq 1481   ∈ wcel 1988  Vcvv 3195   ⊆ wss 3567  𝒫 cpw 4149   class class class wbr 4644  ωcom 7050   ≼ cdom 7938  Fincfn 7940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944 This theorem is referenced by:  npomex  9803
 Copyright terms: Public domain W3C validator