MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npomex Structured version   Visualization version   GIF version

Theorem npomex 9762
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 9759 and nsmallnq 9743). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
npomex (𝐴P → ω ∈ V)

Proof of Theorem npomex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3198 . . . 4 (𝐴P𝐴 ∈ V)
2 prnmax 9761 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑦𝐴 𝑥 <Q 𝑦)
32ralrimiva 2960 . . . . 5 (𝐴P → ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
4 prpssnq 9756 . . . . . . . . . . 11 (𝐴P𝐴Q)
54pssssd 3682 . . . . . . . . . 10 (𝐴P𝐴Q)
6 ltsonq 9735 . . . . . . . . . 10 <Q Or Q
7 soss 5013 . . . . . . . . . 10 (𝐴Q → ( <Q Or Q → <Q Or 𝐴))
85, 6, 7mpisyl 21 . . . . . . . . 9 (𝐴P → <Q Or 𝐴)
98adantr 481 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → <Q Or 𝐴)
10 simpr 477 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → 𝐴 ∈ Fin)
11 prn0 9755 . . . . . . . . 9 (𝐴P𝐴 ≠ ∅)
1211adantr 481 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → 𝐴 ≠ ∅)
13 fimax2g 8150 . . . . . . . 8 (( <Q Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦)
149, 10, 12, 13syl3anc 1323 . . . . . . 7 ((𝐴P𝐴 ∈ Fin) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦)
15 ralnex 2986 . . . . . . . . 9 (∀𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦𝐴 𝑥 <Q 𝑦)
1615rexbii 3034 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐴 𝑥 <Q 𝑦)
17 rexnal 2989 . . . . . . . 8 (∃𝑥𝐴 ¬ ∃𝑦𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
1816, 17bitri 264 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
1914, 18sylib 208 . . . . . 6 ((𝐴P𝐴 ∈ Fin) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
2019ex 450 . . . . 5 (𝐴P → (𝐴 ∈ Fin → ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦))
213, 20mt2d 131 . . . 4 (𝐴P → ¬ 𝐴 ∈ Fin)
22 nelne1 2886 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin)
231, 21, 22syl2anc 692 . . 3 (𝐴P → V ≠ Fin)
2423necomd 2845 . 2 (𝐴P → Fin ≠ V)
25 fineqv 8119 . . 3 (¬ ω ∈ V ↔ Fin = V)
2625necon1abii 2838 . 2 (Fin ≠ V ↔ ω ∈ V)
2724, 26sylib 208 1 (𝐴P → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  wss 3555  c0 3891   class class class wbr 4613   Or wor 4994  ωcom 7012  Fincfn 7899  Qcnq 9618   <Q cltq 9624  Pcnp 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-ni 9638  df-mi 9640  df-lti 9641  df-ltpq 9676  df-enq 9677  df-nq 9678  df-ltnq 9684  df-np 9747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator