HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulass Structured version   Visualization version   GIF version

Theorem homulass 28510
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))

Proof of Theorem homulass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcl 9964 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
2 homval 28449 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
31, 2syl3an1 1356 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
433expia 1264 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
543impa 1256 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
65imp 445 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
7 homval 28449 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
87oveq2d 6620 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
983expa 1262 . . . . . . 7 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1093adantl1 1215 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
11 ffvelrn 6313 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
12 ax-hvmulass 27713 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1311, 12syl3an3 1358 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
14133expa 1262 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1514exp43 639 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥)))))))
16153imp1 1277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1710, 16eqtr4d 2658 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · 𝐵) · (𝑇𝑥)))
186, 17eqtr4d 2658 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
19 homulcl 28467 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
20 homval 28449 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2119, 20syl3an2 1357 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
22213expia 1264 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
23223impb 1257 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
2423imp 445 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2518, 24eqtr4d 2658 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
2625ralrimiva 2960 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
27 homulcl 28467 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
281, 27stoic3 1698 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
29 homulcl 28467 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3019, 29sylan2 491 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
31303impb 1257 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
32 hoeq 28468 . . 3 ((((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3328, 31, 32syl2anc 692 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3426, 33mpbid 222 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wf 5843  cfv 5847  (class class class)co 6604  cc 9878   · cmul 9885  chil 27625   · csm 27627   ·op chot 27645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-mulcl 9942  ax-hilex 27705  ax-hfvmul 27711  ax-hvmulass 27713
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-homul 28439
This theorem is referenced by:  homul12  28513  honegneg  28514  leopmul  28842  nmopleid  28847  opsqrlem1  28848  opsqrlem6  28853
  Copyright terms: Public domain W3C validator