MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfm Structured version   Visualization version   GIF version

Theorem fmfnfm 21675
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfm (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐿   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fmfnfm
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . . 6 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbsspw 21549 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌)
31, 2syl 17 . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝑌)
4 elfvdm 6179 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
51, 4syl 17 . . . . . . 7 (𝜑𝑌 ∈ dom fBas)
6 fmfnfm.l . . . . . . 7 (𝜑𝐿 ∈ (Fil‘𝑋))
7 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
8 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
9 ffn 6004 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
10 dffn4 6080 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
119, 10sylib 208 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
12 foima 6079 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
137, 11, 123syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
14 filtop 21572 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
156, 14syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
16 fgcl 21595 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
17 filtop 21572 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
181, 16, 173syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
19 eqid 2621 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
2019imaelfm 21668 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2115, 1, 7, 18, 20syl31anc 1326 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2213, 21eqeltrrd 2699 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
238, 22sseldd 3585 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
24 rnelfmlem 21669 . . . . . . 7 (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
255, 6, 7, 23, 24syl31anc 1326 . . . . . 6 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
26 fbsspw 21549 . . . . . 6 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
2725, 26syl 17 . . . . 5 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
283, 27unssd 3769 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌)
29 ssun1 3756 . . . . 5 𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 fbasne0 21547 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅)
311, 30syl 17 . . . . 5 (𝜑𝐵 ≠ ∅)
32 ssn0 3950 . . . . 5 ((𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
3329, 31, 32sylancr 694 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
34 vex 3189 . . . . . . . . 9 𝑡 ∈ V
35 eqid 2621 . . . . . . . . . 10 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
3635elrnmpt 5334 . . . . . . . . 9 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3734, 36ax-mp 5 . . . . . . . 8 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
38 0nelfil 21566 . . . . . . . . . . . . . 14 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
396, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ ∅ ∈ 𝐿)
4039ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ∅ ∈ 𝐿)
416adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → 𝐿 ∈ (Fil‘𝑋))
428adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
4315, 1, 73jca 1240 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
4443adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
45 ssfg 21589 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
461, 45syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
4746sselda 3584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
4819imaelfm 21668 . . . . . . . . . . . . . . . . 17 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4944, 47, 48syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
5042, 49sseldd 3585 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
5141, 50jca 554 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
52 filin 21571 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
53523expa 1262 . . . . . . . . . . . . . 14 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
5451, 53sylan 488 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
55 eleq1 2686 . . . . . . . . . . . . 13 (((𝐹𝑠) ∩ 𝑥) = ∅ → (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿))
5654, 55syl5ibcom 235 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (((𝐹𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿))
5740, 56mtod 189 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ((𝐹𝑠) ∩ 𝑥) = ∅)
58 neq0 3908 . . . . . . . . . . . 12 (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥))
59 elin 3776 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥))
60 ffun 6007 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋 → Fun 𝐹)
61 fvelima 6207 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑡 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡)
6261ex 450 . . . . . . . . . . . . . . . . . 18 (Fun 𝐹 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
637, 60, 623syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
6463ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
657, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
6665ad3antrrr 765 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → Fun 𝐹)
67 fbelss 21550 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
681, 67sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠𝑌)
69 fdm 6010 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
707, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom 𝐹 = 𝑌)
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
7268, 71sseqtr4d 3623 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
7372adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → 𝑠 ⊆ dom 𝐹)
7473sselda 3584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
75 fvimacnv 6290 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
7666, 74, 75syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
77 inelcm 4006 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑠𝑦 ∈ (𝐹𝑥)) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
7877ex 450 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7978adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8076, 79sylbid 230 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
81 eleq1 2686 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑡 → ((𝐹𝑦) ∈ 𝑥𝑡𝑥))
8281imbi1d 331 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) = 𝑡 → (((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅) ↔ (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8380, 82syl5ibcom 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8483rexlimdva 3024 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑦𝑠 (𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8564, 84syld 47 . . . . . . . . . . . . . . 15 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8685impd 447 . . . . . . . . . . . . . 14 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8759, 86syl5bi 232 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8887exlimdv 1858 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8958, 88syl5bi 232 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9057, 89mpd 15 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
91 ineq2 3788 . . . . . . . . . . 11 (𝑡 = (𝐹𝑥) → (𝑠𝑡) = (𝑠 ∩ (𝐹𝑥)))
9291neeq1d 2849 . . . . . . . . . 10 (𝑡 = (𝐹𝑥) → ((𝑠𝑡) ≠ ∅ ↔ (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9390, 92syl5ibrcom 237 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9493rexlimdva 3024 . . . . . . . 8 ((𝜑𝑠𝐵) → (∃𝑥𝐿 𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9537, 94syl5bi 232 . . . . . . 7 ((𝜑𝑠𝐵) → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → (𝑠𝑡) ≠ ∅))
9695expimpd 628 . . . . . 6 (𝜑 → ((𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ≠ ∅))
9796ralrimivv 2964 . . . . 5 (𝜑 → ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅)
98 fbunfip 21586 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
991, 25, 98syl2anc 692 . . . . 5 (𝜑 → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
10097, 99mpbird 247 . . . 4 (𝜑 → ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
101 fsubbas 21584 . . . . 5 (𝑌 ∈ dom fBas → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
1021, 4, 1013syl 18 . . . 4 (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
10328, 33, 100, 102mpbir3and 1243 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌))
104 fgcl 21595 . . 3 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
105103, 104syl 17 . 2 (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
106 unexg 6915 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
1071, 25, 106syl2anc 692 . . . . 5 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
108 ssfii 8272 . . . . 5 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
109107, 108syl 17 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
110109unssad 3770 . . 3 (𝜑𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
111 ssfg 21589 . . . 4 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
112103, 111syl 17 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
113110, 112sstrd 3594 . 2 (𝜑𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
1141, 6, 7, 8fmfnfmlem4 21674 . . . . 5 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
115 elfm 21664 . . . . . 6 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
11615, 103, 7, 115syl3anc 1323 . . . . 5 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
117114, 116bitr4d 271 . . . 4 (𝜑 → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
118117eqrdv 2619 . . 3 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
119 eqid 2621 . . . . 5 (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
120119fmfg 21666 . . . 4 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
12115, 103, 7, 120syl3anc 1323 . . 3 (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
122118, 121eqtrd 2655 . 2 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
123 sseq2 3608 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐵𝑓𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
124 fveq2 6150 . . . . 5 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
125124eqeq2d 2631 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))))
126123, 125anbi12d 746 . . 3 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))))
127126rspcev 3295 . 2 (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
128105, 113, 122, 127syl12anc 1321 1 (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cun 3554  cin 3555  wss 3556  c0 3893  𝒫 cpw 4132  cmpt 4675  ccnv 5075  dom cdm 5076  ran crn 5077  cima 5079  Fun wfun 5843   Fn wfn 5844  wf 5845  ontowfo 5847  cfv 5849  (class class class)co 6607  ficfi 8263  fBascfbas 19656  filGencfg 19657  Filcfil 21562   FilMap cfm 21650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-fin 7906  df-fi 8264  df-fbas 19665  df-fg 19666  df-fil 21563  df-fm 21655
This theorem is referenced by:  fmufil  21676  cnpfcf  21758
  Copyright terms: Public domain W3C validator