MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inttsk Structured version   Visualization version   GIF version

Theorem inttsk 10196
Description: The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
inttsk ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Tarski)

Proof of Theorem inttsk
Dummy variables 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . . . . 8 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝐴 ⊆ Tarski)
21sselda 3967 . . . . . . 7 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝑡 ∈ Tarski)
3 elinti 4885 . . . . . . . . 9 (𝑧 𝐴 → (𝑡𝐴𝑧𝑡))
43imp 409 . . . . . . . 8 ((𝑧 𝐴𝑡𝐴) → 𝑧𝑡)
54adantll 712 . . . . . . 7 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝑧𝑡)
6 tskpwss 10174 . . . . . . 7 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → 𝒫 𝑧𝑡)
72, 5, 6syl2anc 586 . . . . . 6 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝒫 𝑧𝑡)
87ralrimiva 3182 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → ∀𝑡𝐴 𝒫 𝑧𝑡)
9 ssint 4892 . . . . 5 (𝒫 𝑧 𝐴 ↔ ∀𝑡𝐴 𝒫 𝑧𝑡)
108, 9sylibr 236 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝒫 𝑧 𝐴)
11 tskpw 10175 . . . . . . 7 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → 𝒫 𝑧𝑡)
122, 5, 11syl2anc 586 . . . . . 6 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ 𝑡𝐴) → 𝒫 𝑧𝑡)
1312ralrimiva 3182 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → ∀𝑡𝐴 𝒫 𝑧𝑡)
14 vpwex 5278 . . . . . 6 𝒫 𝑧 ∈ V
1514elint2 4883 . . . . 5 (𝒫 𝑧 𝐴 ↔ ∀𝑡𝐴 𝒫 𝑧𝑡)
1613, 15sylibr 236 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → 𝒫 𝑧 𝐴)
1710, 16jca 514 . . 3 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴))
1817ralrimiva 3182 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴))
19 elpwi 4548 . . . 4 (𝑧 ∈ 𝒫 𝐴𝑧 𝐴)
20 rexnal 3238 . . . . . . . 8 (∃𝑡𝐴 ¬ 𝑧𝑡 ↔ ¬ ∀𝑡𝐴 𝑧𝑡)
21 simpr 487 . . . . . . . . . . . . 13 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
22 intex 5240 . . . . . . . . . . . . 13 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
2321, 22sylib 220 . . . . . . . . . . . 12 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
2423ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴 ∈ V)
25 simplr 767 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
26 ssdomg 8555 . . . . . . . . . . 11 ( 𝐴 ∈ V → (𝑧 𝐴𝑧 𝐴))
2724, 25, 26sylc 65 . . . . . . . . . 10 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
28 vex 3497 . . . . . . . . . . . 12 𝑡 ∈ V
29 intss1 4891 . . . . . . . . . . . . 13 (𝑡𝐴 𝐴𝑡)
3029ad2antrl 726 . . . . . . . . . . . 12 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑡)
31 ssdomg 8555 . . . . . . . . . . . 12 (𝑡 ∈ V → ( 𝐴𝑡 𝐴𝑡))
3228, 30, 31mpsyl 68 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑡)
33 simprr 771 . . . . . . . . . . . . 13 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → ¬ 𝑧𝑡)
34 simplll 773 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴 ⊆ Tarski)
35 simprl 769 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡𝐴)
3634, 35sseldd 3968 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡 ∈ Tarski)
3725, 30sstrd 3977 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧𝑡)
38 tsken 10176 . . . . . . . . . . . . . . 15 ((𝑡 ∈ Tarski ∧ 𝑧𝑡) → (𝑧𝑡𝑧𝑡))
3936, 37, 38syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → (𝑧𝑡𝑧𝑡))
4039ord 860 . . . . . . . . . . . . 13 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → (¬ 𝑧𝑡𝑧𝑡))
4133, 40mt3d 150 . . . . . . . . . . . 12 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧𝑡)
4241ensymd 8560 . . . . . . . . . . 11 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑡𝑧)
43 domentr 8568 . . . . . . . . . . 11 (( 𝐴𝑡𝑡𝑧) → 𝐴𝑧)
4432, 42, 43syl2anc 586 . . . . . . . . . 10 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝐴𝑧)
45 sbth 8637 . . . . . . . . . 10 ((𝑧 𝐴 𝐴𝑧) → 𝑧 𝐴)
4627, 44, 45syl2anc 586 . . . . . . . . 9 ((((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) ∧ (𝑡𝐴 ∧ ¬ 𝑧𝑡)) → 𝑧 𝐴)
4746rexlimdvaa 3285 . . . . . . . 8 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (∃𝑡𝐴 ¬ 𝑧𝑡𝑧 𝐴))
4820, 47syl5bir 245 . . . . . . 7 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ ∀𝑡𝐴 𝑧𝑡𝑧 𝐴))
4948con1d 147 . . . . . 6 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ 𝑧 𝐴 → ∀𝑡𝐴 𝑧𝑡))
50 vex 3497 . . . . . . 7 𝑧 ∈ V
5150elint2 4883 . . . . . 6 (𝑧 𝐴 ↔ ∀𝑡𝐴 𝑧𝑡)
5249, 51syl6ibr 254 . . . . 5 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (¬ 𝑧 𝐴𝑧 𝐴))
5352orrd 859 . . . 4 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 𝐴) → (𝑧 𝐴𝑧 𝐴))
5419, 53sylan2 594 . . 3 (((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) ∧ 𝑧 ∈ 𝒫 𝐴) → (𝑧 𝐴𝑧 𝐴))
5554ralrimiva 3182 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))
56 eltsk2g 10173 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Tarski ↔ (∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴) ∧ ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))))
5723, 56syl 17 . 2 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → ( 𝐴 ∈ Tarski ↔ (∀𝑧 𝐴(𝒫 𝑧 𝐴 ∧ 𝒫 𝑧 𝐴) ∧ ∀𝑧 ∈ 𝒫 𝐴(𝑧 𝐴𝑧 𝐴))))
5818, 55, 57mpbir2and 711 1 ((𝐴 ⊆ Tarski ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3936  c0 4291  𝒫 cpw 4539   cint 4876   class class class wbr 5066  cen 8506  cdom 8507  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-er 8289  df-en 8510  df-dom 8511  df-tsk 10171
This theorem is referenced by:  tskmcl  10263
  Copyright terms: Public domain W3C validator