Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2at0 Structured version   Visualization version   GIF version

Theorem lhp2at0 34837
Description: Join and meet with different atoms under co-atom 𝑊. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
lhp2at0.l = (le‘𝐾)
lhp2at0.j = (join‘𝐾)
lhp2at0.m = (meet‘𝐾)
lhp2at0.z 0 = (0.‘𝐾)
lhp2at0.a 𝐴 = (Atoms‘𝐾)
lhp2at0.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2at0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑉) = 0 )

Proof of Theorem lhp2at0
StepHypRef Expression
1 simp11l 1170 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
2 hlol 34167 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ OL)
4 simp12l 1172 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑃𝐴)
5 simp2l 1085 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈𝐴)
6 eqid 2621 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 lhp2at0.j . . . . . 6 = (join‘𝐾)
8 lhp2at0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 34172 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
101, 4, 5, 9syl3anc 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑃 𝑈) ∈ (Base‘𝐾))
11 simp11r 1171 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊𝐻)
12 lhp2at0.h . . . . . 6 𝐻 = (LHyp‘𝐾)
136, 12lhpbase 34803 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1411, 13syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊 ∈ (Base‘𝐾))
15 simp3l 1087 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
166, 8atbase 34095 . . . . 5 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
1715, 16syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
18 lhp2at0.m . . . . 5 = (meet‘𝐾)
196, 18latmassOLD 34035 . . . 4 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾))) → (((𝑃 𝑈) 𝑊) 𝑉) = ((𝑃 𝑈) (𝑊 𝑉)))
203, 10, 14, 17, 19syl13anc 1325 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (((𝑃 𝑈) 𝑊) 𝑉) = ((𝑃 𝑈) (𝑊 𝑉)))
21 lhp2at0.l . . . . . . . . 9 = (le‘𝐾)
22 lhp2at0.z . . . . . . . . 9 0 = (0.‘𝐾)
2321, 18, 22, 8, 12lhpmat 34835 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
24233adant3 1079 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) → (𝑃 𝑊) = 0 )
25243ad2ant1 1080 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑃 𝑊) = 0 )
2625oveq1d 6630 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑊) 𝑈) = ( 0 𝑈))
276, 8atbase 34095 . . . . . . 7 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
285, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈 ∈ (Base‘𝐾))
29 simp2r 1086 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈 𝑊)
306, 21, 7, 18, 8atmod4i2 34672 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
311, 4, 28, 14, 29, 30syl131anc 1336 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
326, 7, 22olj02 34032 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ( 0 𝑈) = 𝑈)
333, 28, 32syl2anc 692 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ( 0 𝑈) = 𝑈)
3426, 31, 333eqtr3d 2663 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑊) = 𝑈)
3534oveq1d 6630 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (((𝑃 𝑈) 𝑊) 𝑉) = (𝑈 𝑉))
3620, 35eqtr3d 2657 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) (𝑊 𝑉)) = (𝑈 𝑉))
37 simp3r 1088 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
38 hllat 34169 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
391, 38syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ Lat)
406, 21, 18latleeqm2 17020 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑉 𝑊 ↔ (𝑊 𝑉) = 𝑉))
4139, 17, 14, 40syl3anc 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑉 𝑊 ↔ (𝑊 𝑉) = 𝑉))
4237, 41mpbid 222 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑊 𝑉) = 𝑉)
4342oveq2d 6631 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) (𝑊 𝑉)) = ((𝑃 𝑈) 𝑉))
44 simp13 1091 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑈𝑉)
45 hlatl 34166 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
461, 45syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ AtLat)
4718, 22, 8atnem0 34124 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴𝑉𝐴) → (𝑈𝑉 ↔ (𝑈 𝑉) = 0 ))
4846, 5, 15, 47syl3anc 1323 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑈𝑉 ↔ (𝑈 𝑉) = 0 ))
4944, 48mpbid 222 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑈 𝑉) = 0 )
5036, 43, 493eqtr3d 2663 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑉) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  cfv 5857  (class class class)co 6615  Basecbs 15800  lecple 15888  joincjn 16884  meetcmee 16885  0.cp0 16977  Latclat 16985  OLcol 33980  Atomscatm 34069  AtLatcal 34070  HLchlt 34156  LHypclh 34789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793
This theorem is referenced by:  lhp2atnle  34838  cdlemh2  35623
  Copyright terms: Public domain W3C validator