MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq3 Structured version   Visualization version   GIF version

Theorem feq3 5927
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
feq3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))

Proof of Theorem feq3
StepHypRef Expression
1 sseq2 3590 . . 3 (𝐴 = 𝐵 → (ran 𝐹𝐴 ↔ ran 𝐹𝐵))
21anbi2d 736 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹𝐵)))
3 df-f 5794 . 2 (𝐹:𝐶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹𝐴))
4 df-f 5794 . 2 (𝐹:𝐶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹𝐵))
52, 3, 43bitr4g 302 1 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wss 3540  ran crn 5029   Fn wfn 5785  wf 5786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-in 3547  df-ss 3554  df-f 5794
This theorem is referenced by:  feq23  5928  feq3d  5931  fun2  5966  fconstg  5990  f1eq3  5996  mapvalg  7732  mapsn  7763  cantnff  8432  axdc4uz  12603  supcvg  14376  lmff  20863  txcn  21187  lmmbr  22809  iscmet3  22844  dvcnvrelem2  23530  itgsubstlem  23560  isumgra  25638  wlks  25841  wlkcompim  25848  wlkelwrd  25852  iseupa  26286  isgrpo  26529  vciOLD  26594  isvclem  26610  nmop0h  28028  sitgaddlemb  29531  sitmcl  29534  cvmliftlem15  30328  mtyf  30497  matunitlindflem1  32369  sdclem1  32503  k0004lem1  37259  mapsnd  38177  stoweidlem57  38744  hashfxnn0  40209  umgrislfupgr  40340  usgrislfuspgr  40406  1wlkv0  40851
  Copyright terms: Public domain W3C validator