MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreincl Structured version   Visualization version   GIF version

Theorem mreincl 16183
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)

Proof of Theorem mreincl
StepHypRef Expression
1 intprg 4478 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1077 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = (𝐴𝐵))
3 simp1 1059 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 prssi 4323 . . . 4 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
543adant1 1077 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
6 prnzg 4283 . . . 4 (𝐴𝐶 → {𝐴, 𝐵} ≠ ∅)
763ad2ant2 1081 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ≠ ∅)
8 mreintcl 16179 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≠ ∅) → {𝐴, 𝐵} ∈ 𝐶)
93, 5, 7, 8syl3anc 1323 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝐶)
102, 9eqeltrrd 2699 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cin 3555  wss 3556  c0 3893  {cpr 4152   cint 4442  cfv 5849  Moorecmre 16166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-int 4443  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-iota 5812  df-fun 5851  df-fv 5857  df-mre 16170
This theorem is referenced by:  submacs  17289  subgacs  17553  nsgacs  17554  lsmmod  18012  lssacs  18889  mreclatdemoBAD  20813  subrgacs  37272  sdrgacs  37273
  Copyright terms: Public domain W3C validator