MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmmod Structured version   Visualization version   GIF version

Theorem lsmmod 18801
Description: The modular law holds for subgroup sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmmod.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmmod (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))

Proof of Theorem lsmmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 simpl2 1188 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑇 ∈ (SubGrp‘𝐺))
3 inss1 4205 . . . . 5 (𝑇𝑈) ⊆ 𝑇
43a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑇)
5 lsmmod.p . . . . 5 = (LSSum‘𝐺)
65lsmless2 18786 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
71, 2, 4, 6syl3anc 1367 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ (𝑆 𝑇))
8 simpr 487 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑆𝑈)
9 inss2 4206 . . . . 5 (𝑇𝑈) ⊆ 𝑈
109a1i 11 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ⊆ 𝑈)
11 subgrcl 18284 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2821 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
1312subgacs 18313 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
14 acsmre 16923 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
151, 11, 13, 144syl 19 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16 simpl3 1189 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → 𝑈 ∈ (SubGrp‘𝐺))
17 mreincl 16870 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
1815, 2, 16, 17syl3anc 1367 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
195lsmlub 18790 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
201, 18, 16, 19syl3anc 1367 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆𝑈 ∧ (𝑇𝑈) ⊆ 𝑈) ↔ (𝑆 (𝑇𝑈)) ⊆ 𝑈))
218, 10, 20mpbi2and 710 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ 𝑈)
227, 21ssind 4209 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) ⊆ ((𝑆 𝑇) ∩ 𝑈))
23 elin 4169 . . . 4 (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) ↔ (𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈))
24 eqid 2821 . . . . . . . 8 (+g𝐺) = (+g𝐺)
2524, 5lsmelval 18774 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
261, 2, 25syl2anc 586 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) ↔ ∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
271adantr 483 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
2818adantr 483 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑇𝑈) ∈ (SubGrp‘𝐺))
29 simprll 777 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑆)
30 simprlr 778 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑇)
3127, 11syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝐺 ∈ Grp)
3216adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
3312subgss 18280 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
3432, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑈 ⊆ (Base‘𝐺))
358adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑆𝑈)
3635, 29sseldd 3968 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦𝑈)
3734, 36sseldd 3968 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑦 ∈ (Base‘𝐺))
38 eqid 2821 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
39 eqid 2821 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
4012, 24, 38, 39grplinv 18152 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4131, 37, 40syl2anc 586 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)𝑦) = (0g𝐺))
4241oveq1d 7171 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
4339subginvcl 18288 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑈) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4432, 36, 43syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ 𝑈)
4534, 44sseldd 3968 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
46 simpll2 1209 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
4712subgss 18280 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
4846, 47syl 17 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑇 ⊆ (Base‘𝐺))
4948, 30sseldd 3968 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (Base‘𝐺))
5012, 24grpass 18112 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5131, 45, 37, 49, 50syl13anc 1368 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((((invg𝐺)‘𝑦)(+g𝐺)𝑦)(+g𝐺)𝑧) = (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)))
5212, 24, 38grplid 18133 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5331, 49, 52syl2anc 586 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
5442, 51, 533eqtr3d 2864 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) = 𝑧)
55 simprr 771 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ 𝑈)
5624subgcl 18289 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((invg𝐺)‘𝑦) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5732, 44, 55, 56syl3anc 1367 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (((invg𝐺)‘𝑦)(+g𝐺)(𝑦(+g𝐺)𝑧)) ∈ 𝑈)
5854, 57eqeltrrd 2914 . . . . . . . . . . 11 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧𝑈)
5930, 58elind 4171 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → 𝑧 ∈ (𝑇𝑈))
6024, 5lsmelvali 18775 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑇𝑈) ∈ (SubGrp‘𝐺)) ∧ (𝑦𝑆𝑧 ∈ (𝑇𝑈))) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6127, 28, 29, 59, 60syl22anc 836 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ ((𝑦𝑆𝑧𝑇) ∧ (𝑦(+g𝐺)𝑧) ∈ 𝑈)) → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))
6261expr 459 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
63 eleq1 2900 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑈))
64 eleq1 2900 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∈ (𝑆 (𝑇𝑈)) ↔ (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈))))
6563, 64imbi12d 347 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈))) ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝑈 → (𝑦(+g𝐺)𝑧) ∈ (𝑆 (𝑇𝑈)))))
6662, 65syl5ibrcom 249 . . . . . . 7 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) ∧ (𝑦𝑆𝑧𝑇)) → (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6766rexlimdvva 3294 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (∃𝑦𝑆𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6826, 67sylbid 242 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ (𝑆 𝑇) → (𝑥𝑈𝑥 ∈ (𝑆 (𝑇𝑈)))))
6968impd 413 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑥 ∈ (𝑆 𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7023, 69syl5bi 244 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑥 ∈ ((𝑆 𝑇) ∩ 𝑈) → 𝑥 ∈ (𝑆 (𝑇𝑈))))
7170ssrdv 3973 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → ((𝑆 𝑇) ∩ 𝑈) ⊆ (𝑆 (𝑇𝑈)))
7222, 71eqssd 3984 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ 𝑆𝑈) → (𝑆 (𝑇𝑈)) = ((𝑆 𝑇) ∩ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  cin 3935  wss 3936  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Moorecmre 16853  ACScacs 16856  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273  LSSumclsm 18759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-subg 18276  df-lsm 18761
This theorem is referenced by:  lsmmod2  18802  lcvexchlem2  36186  dihmeetlem9N  38466
  Copyright terms: Public domain W3C validator