MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnr Structured version   Visualization version   GIF version

Theorem mulcmpblnr 9748
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))

Proof of Theorem mulcmpblnr
StepHypRef Expression
1 mulcmpblnrlem 9747 . . 3 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
2 mulclpr 9698 . . . . . 6 ((𝐷P𝐹P) → (𝐷 ·P 𝐹) ∈ P)
32ad2ant2lr 779 . . . . 5 (((𝐶P𝐷P) ∧ (𝐹P𝐺P)) → (𝐷 ·P 𝐹) ∈ P)
43ad2ant2lr 779 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐹) ∈ P)
5 simplll 793 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐴P)
6 simprll 797 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐹P)
7 mulclpr 9698 . . . . . . 7 ((𝐴P𝐹P) → (𝐴 ·P 𝐹) ∈ P)
85, 6, 7syl2anc 690 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐹) ∈ P)
9 simpllr 794 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐵P)
10 simprlr 798 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐺P)
11 mulclpr 9698 . . . . . . 7 ((𝐵P𝐺P) → (𝐵 ·P 𝐺) ∈ P)
129, 10, 11syl2anc 690 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐺) ∈ P)
13 addclpr 9696 . . . . . 6 (((𝐴 ·P 𝐹) ∈ P ∧ (𝐵 ·P 𝐺) ∈ P) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
148, 12, 13syl2anc 690 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
15 simplrl 795 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐶P)
16 simprrr 800 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑆P)
17 mulclpr 9698 . . . . . . 7 ((𝐶P𝑆P) → (𝐶 ·P 𝑆) ∈ P)
1815, 16, 17syl2anc 690 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑆) ∈ P)
19 simplrr 796 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐷P)
20 simprrl 799 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑅P)
21 mulclpr 9698 . . . . . . 7 ((𝐷P𝑅P) → (𝐷 ·P 𝑅) ∈ P)
2219, 20, 21syl2anc 690 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑅) ∈ P)
23 addclpr 9696 . . . . . 6 (((𝐶 ·P 𝑆) ∈ P ∧ (𝐷 ·P 𝑅) ∈ P) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
2418, 22, 23syl2anc 690 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
25 addclpr 9696 . . . . 5 ((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
2614, 24, 25syl2anc 690 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
27 addcanpr 9724 . . . 4 (((𝐷 ·P 𝐹) ∈ P ∧ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
284, 26, 27syl2anc 690 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
291, 28syl5 33 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
30 mulclpr 9698 . . . . 5 ((𝐴P𝐺P) → (𝐴 ·P 𝐺) ∈ P)
31 mulclpr 9698 . . . . 5 ((𝐵P𝐹P) → (𝐵 ·P 𝐹) ∈ P)
32 addclpr 9696 . . . . 5 (((𝐴 ·P 𝐺) ∈ P ∧ (𝐵 ·P 𝐹) ∈ P) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
3330, 31, 32syl2an 492 . . . 4 (((𝐴P𝐺P) ∧ (𝐵P𝐹P)) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
345, 10, 9, 6, 33syl22anc 1318 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
35 mulclpr 9698 . . . . 5 ((𝐶P𝑅P) → (𝐶 ·P 𝑅) ∈ P)
36 mulclpr 9698 . . . . 5 ((𝐷P𝑆P) → (𝐷 ·P 𝑆) ∈ P)
37 addclpr 9696 . . . . 5 (((𝐶 ·P 𝑅) ∈ P ∧ (𝐷 ·P 𝑆) ∈ P) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3835, 36, 37syl2an 492 . . . 4 (((𝐶P𝑅P) ∧ (𝐷P𝑆P)) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3915, 20, 19, 16, 38syl22anc 1318 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
40 enrbreq 9741 . . 3 (((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P) ∧ (((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4114, 34, 39, 24, 40syl22anc 1318 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4229, 41sylibrd 247 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  cop 4130   class class class wbr 4577  (class class class)co 6526  Pcnp 9537   +P cpp 9539   ·P cmp 9540   ~R cer 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-ni 9550  df-pli 9551  df-mi 9552  df-lti 9553  df-plpq 9586  df-mpq 9587  df-ltpq 9588  df-enq 9589  df-nq 9590  df-erq 9591  df-plq 9592  df-mq 9593  df-1nq 9594  df-rq 9595  df-ltnq 9596  df-np 9659  df-plp 9661  df-mp 9662  df-ltp 9663  df-enr 9733
This theorem is referenced by:  mulsrmo  9751
  Copyright terms: Public domain W3C validator