![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulnzcnopr | Structured version Visualization version GIF version |
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.) |
Ref | Expression |
---|---|
mulnzcnopr | ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulf 10206 | . . . . 5 ⊢ · :(ℂ × ℂ)⟶ℂ | |
2 | ffnov 6927 | . . . . 5 ⊢ ( · :(ℂ × ℂ)⟶ℂ ↔ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ)) | |
3 | 1, 2 | mpbi 220 | . . . 4 ⊢ ( · Fn (ℂ × ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (𝑥 · 𝑦) ∈ ℂ) |
4 | 3 | simpli 476 | . . 3 ⊢ · Fn (ℂ × ℂ) |
5 | difss 3878 | . . . 4 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
6 | xpss12 5279 | . . . 4 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) | |
7 | 5, 5, 6 | mp2an 710 | . . 3 ⊢ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ) |
8 | fnssres 6163 | . . 3 ⊢ (( · Fn (ℂ × ℂ) ∧ ((ℂ ∖ {0}) × (ℂ ∖ {0})) ⊆ (ℂ × ℂ)) → ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0}))) | |
9 | 4, 7, 8 | mp2an 710 | . 2 ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) |
10 | ovres 6963 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) = (𝑥 · 𝑦)) | |
11 | eldifsn 4460 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
12 | eldifsn 4460 | . . . . . 6 ⊢ (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) | |
13 | mulcl 10210 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
14 | 13 | ad2ant2r 800 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ∈ ℂ) |
15 | mulne0 10859 | . . . . . . 7 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑥 · 𝑦) ≠ 0) | |
16 | 14, 15 | jca 555 | . . . . . 6 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) |
17 | 11, 12, 16 | syl2anb 497 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) |
18 | eldifsn 4460 | . . . . 5 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
19 | 17, 18 | sylibr 224 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
20 | 10, 19 | eqeltrd 2837 | . . 3 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0})) |
21 | 20 | rgen2a 3113 | . 2 ⊢ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}) |
22 | ffnov 6927 | . 2 ⊢ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ (( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ (ℂ ∖ {0})(𝑥( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑦) ∈ (ℂ ∖ {0}))) | |
23 | 9, 21, 22 | mpbir2an 993 | 1 ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2137 ≠ wne 2930 ∀wral 3048 ∖ cdif 3710 ⊆ wss 3713 {csn 4319 × cxp 5262 ↾ cres 5266 Fn wfn 6042 ⟶wf 6043 (class class class)co 6811 ℂcc 10124 0cc0 10126 · cmul 10131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-mulf 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-po 5185 df-so 5186 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |