Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  receu Structured version   Visualization version   GIF version

Theorem receu 10884
 Description: Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
receu ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem receu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recex 10871 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
213adant1 1125 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
3 simprl 811 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4 simpll 807 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
53, 4mulcld 10272 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
6 oveq1 6821 . . . . . . . 8 ((𝐵 · 𝑦) = 1 → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
76ad2antll 767 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
8 simplr 809 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
98, 3, 4mulassd 10275 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴)))
104mulid2d 10270 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴)
117, 9, 103eqtr3d 2802 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴)
12 oveq2 6822 . . . . . . . 8 (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴)))
1312eqeq1d 2762 . . . . . . 7 (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴))
1413rspcev 3449 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ (𝐵 · (𝑦 · 𝐴)) = 𝐴) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
155, 11, 14syl2anc 696 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
1615rexlimdvaa 3170 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
17163adant3 1127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
182, 17mpd 15 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
19 eqtr3 2781 . . . . . . 7 (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦))
20 mulcan 10876 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦))
2119, 20syl5ib 234 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
22213expa 1112 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
2322expcom 450 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
24233adant1 1125 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2524ralrimivv 3108 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
26 oveq2 6822 . . . 4 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
2726eqeq1d 2762 . . 3 (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴))
2827reu4 3541 . 2 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2918, 25, 28sylanbrc 701 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051  ∃!wreu 3052  (class class class)co 6814  ℂcc 10146  0cc0 10148  1c1 10149   · cmul 10153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481 This theorem is referenced by:  divmul  10900  divcl  10903  rexdiv  29964
 Copyright terms: Public domain W3C validator