MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negeq0 Structured version   Visualization version   GIF version

Theorem negeq0 10547
Description: A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negeq0 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))

Proof of Theorem negeq0
StepHypRef Expression
1 neg0 10539 . . 3 -0 = 0
21eqeq2i 2772 . 2 (-𝐴 = -0 ↔ -𝐴 = 0)
3 0cn 10244 . . 3 0 ∈ ℂ
4 neg11 10544 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝐴 = -0 ↔ 𝐴 = 0))
53, 4mpan2 709 . 2 (𝐴 ∈ ℂ → (-𝐴 = -0 ↔ 𝐴 = 0))
62, 5syl5rbbr 275 1 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  cc 10146  0cc0 10148  -cneg 10479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480  df-neg 10481
This theorem is referenced by:  negne0bi  10566  negeq0d  10596  div2neg  10960  mulgnegnn  17772  cxpsqrt  24669  logrec  24721  axlowdimlem13  26054
  Copyright terms: Public domain W3C validator