HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsilem Structured version   Visualization version   GIF version

Theorem omlsilem 27434
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlsilem.1 𝐺S
omlsilem.2 𝐻S
omlsilem.3 𝐺𝐻
omlsilem.4 (𝐻 ∩ (⊥‘𝐺)) = 0
omlsilem.5 𝐴𝐻
omlsilem.6 𝐵𝐺
omlsilem.7 𝐶 ∈ (⊥‘𝐺)
Assertion
Ref Expression
omlsilem (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)

Proof of Theorem omlsilem
StepHypRef Expression
1 omlsilem.2 . . . . . . . . . 10 𝐻S
2 omlsilem.5 . . . . . . . . . 10 𝐴𝐻
31, 2shelii 27245 . . . . . . . . 9 𝐴 ∈ ℋ
4 omlsilem.1 . . . . . . . . . 10 𝐺S
5 omlsilem.6 . . . . . . . . . 10 𝐵𝐺
64, 5shelii 27245 . . . . . . . . 9 𝐵 ∈ ℋ
7 shocss 27318 . . . . . . . . . . 11 (𝐺S → (⊥‘𝐺) ⊆ ℋ)
84, 7ax-mp 5 . . . . . . . . . 10 (⊥‘𝐺) ⊆ ℋ
9 omlsilem.7 . . . . . . . . . 10 𝐶 ∈ (⊥‘𝐺)
108, 9sselii 3469 . . . . . . . . 9 𝐶 ∈ ℋ
113, 6, 10hvsubaddi 27096 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
12 eqcom 2521 . . . . . . . 8 ((𝐵 + 𝐶) = 𝐴𝐴 = (𝐵 + 𝐶))
1311, 12bitri 262 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐴 = (𝐵 + 𝐶))
14 omlsilem.3 . . . . . . . . . 10 𝐺𝐻
1514, 5sselii 3469 . . . . . . . . 9 𝐵𝐻
16 shsubcl 27250 . . . . . . . . 9 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)
171, 2, 15, 16mp3an 1415 . . . . . . . 8 (𝐴 𝐵) ∈ 𝐻
18 eleq1 2580 . . . . . . . 8 ((𝐴 𝐵) = 𝐶 → ((𝐴 𝐵) ∈ 𝐻𝐶𝐻))
1917, 18mpbii 221 . . . . . . 7 ((𝐴 𝐵) = 𝐶𝐶𝐻)
2013, 19sylbir 223 . . . . . 6 (𝐴 = (𝐵 + 𝐶) → 𝐶𝐻)
21 omlsilem.4 . . . . . . . . 9 (𝐻 ∩ (⊥‘𝐺)) = 0
2221eleq2i 2584 . . . . . . . 8 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0)
23 elin 3662 . . . . . . . 8 (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶𝐻𝐶 ∈ (⊥‘𝐺)))
24 elch0 27284 . . . . . . . 8 (𝐶 ∈ 0𝐶 = 0)
2522, 23, 243bitr3i 288 . . . . . . 7 ((𝐶𝐻𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0)
2625biimpi 204 . . . . . 6 ((𝐶𝐻𝐶 ∈ (⊥‘𝐺)) → 𝐶 = 0)
2720, 9, 26sylancl 692 . . . . 5 (𝐴 = (𝐵 + 𝐶) → 𝐶 = 0)
2827oveq2d 6441 . . . 4 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = (𝐵 + 0))
29 ax-hvaddid 27034 . . . . 5 (𝐵 ∈ ℋ → (𝐵 + 0) = 𝐵)
306, 29ax-mp 5 . . . 4 (𝐵 + 0) = 𝐵
3128, 30syl6eq 2564 . . 3 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) = 𝐵)
3231, 5syl6eqel 2600 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐵 + 𝐶) ∈ 𝐺)
33 eleq1 2580 . 2 (𝐴 = (𝐵 + 𝐶) → (𝐴𝐺 ↔ (𝐵 + 𝐶) ∈ 𝐺))
3432, 33mpbird 245 1 (𝐴 = (𝐵 + 𝐶) → 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938  cin 3443  wss 3444  cfv 5689  (class class class)co 6425  chil 26949   + cva 26950  0c0v 26954   cmv 26955   S csh 26958  cort 26960  0c0h 26965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-hilex 27029  ax-hfvadd 27030  ax-hvcom 27031  ax-hvass 27032  ax-hv0cl 27033  ax-hvaddid 27034  ax-hfvmul 27035  ax-hvmulid 27036  ax-hvdistr2 27039  ax-hvmul0 27040  ax-hfi 27109  ax-his2 27113  ax-his3 27114
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-po 4853  df-so 4854  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-er 7504  df-en 7717  df-dom 7718  df-sdom 7719  df-pnf 9830  df-mnf 9831  df-ltxr 9833  df-sub 10018  df-neg 10019  df-hvsub 27001  df-sh 27237  df-oc 27282  df-ch0 27283
This theorem is referenced by:  omlsii  27435
  Copyright terms: Public domain W3C validator