![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > omlsilem | Structured version Visualization version GIF version |
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsilem.1 | ⊢ 𝐺 ∈ Sℋ |
omlsilem.2 | ⊢ 𝐻 ∈ Sℋ |
omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 |
omlsilem.4 | ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ |
omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 |
omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 |
omlsilem.7 | ⊢ 𝐶 ∈ (⊥‘𝐺) |
Ref | Expression |
---|---|
omlsilem | ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsilem.2 | . . . . . . . . . 10 ⊢ 𝐻 ∈ Sℋ | |
2 | omlsilem.5 | . . . . . . . . . 10 ⊢ 𝐴 ∈ 𝐻 | |
3 | 1, 2 | shelii 28200 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ |
4 | omlsilem.1 | . . . . . . . . . 10 ⊢ 𝐺 ∈ Sℋ | |
5 | omlsilem.6 | . . . . . . . . . 10 ⊢ 𝐵 ∈ 𝐺 | |
6 | 4, 5 | shelii 28200 | . . . . . . . . 9 ⊢ 𝐵 ∈ ℋ |
7 | shocss 28273 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Sℋ → (⊥‘𝐺) ⊆ ℋ) | |
8 | 4, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (⊥‘𝐺) ⊆ ℋ |
9 | omlsilem.7 | . . . . . . . . . 10 ⊢ 𝐶 ∈ (⊥‘𝐺) | |
10 | 8, 9 | sselii 3633 | . . . . . . . . 9 ⊢ 𝐶 ∈ ℋ |
11 | 3, 6, 10 | hvsubaddi 28051 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
12 | eqcom 2658 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐶) = 𝐴 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) | |
13 | 11, 12 | bitri 264 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
14 | omlsilem.3 | . . . . . . . . . 10 ⊢ 𝐺 ⊆ 𝐻 | |
15 | 14, 5 | sselii 3633 | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝐻 |
16 | shsubcl 28205 | . . . . . . . . 9 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | |
17 | 1, 2, 15, 16 | mp3an 1464 | . . . . . . . 8 ⊢ (𝐴 −ℎ 𝐵) ∈ 𝐻 |
18 | eleq1 2718 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → ((𝐴 −ℎ 𝐵) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻)) | |
19 | 17, 18 | mpbii 223 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → 𝐶 ∈ 𝐻) |
20 | 13, 19 | sylbir 225 | . . . . . 6 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 ∈ 𝐻) |
21 | omlsilem.4 | . . . . . . . 8 ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ | |
22 | 21 | eleq2i 2722 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0ℋ) |
23 | elin 3829 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺))) | |
24 | elch0 28239 | . . . . . . 7 ⊢ (𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ) | |
25 | 22, 23, 24 | 3bitr3i 290 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0ℎ) |
26 | 20, 9, 25 | sylanblc 697 | . . . . 5 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 = 0ℎ) |
27 | 26 | oveq2d 6706 | . . . 4 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = (𝐵 +ℎ 0ℎ)) |
28 | ax-hvaddid 27989 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ 0ℎ) = 𝐵) | |
29 | 6, 28 | ax-mp 5 | . . . 4 ⊢ (𝐵 +ℎ 0ℎ) = 𝐵 |
30 | 27, 29 | syl6eq 2701 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = 𝐵) |
31 | 30, 5 | syl6eqel 2738 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) ∈ 𝐺) |
32 | eleq1 2718 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐴 ∈ 𝐺 ↔ (𝐵 +ℎ 𝐶) ∈ 𝐺)) | |
33 | 31, 32 | mpbird 247 | 1 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ⊆ wss 3607 ‘cfv 5926 (class class class)co 6690 ℋchil 27904 +ℎ cva 27905 0ℎc0v 27909 −ℎ cmv 27910 Sℋ csh 27913 ⊥cort 27915 0ℋc0h 27920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-hilex 27984 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvdistr2 27994 ax-hvmul0 27995 ax-hfi 28064 ax-his2 28068 ax-his3 28069 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-sub 10306 df-neg 10307 df-hvsub 27956 df-sh 28192 df-oc 28237 df-ch0 28238 |
This theorem is referenced by: omlsii 28390 |
Copyright terms: Public domain | W3C validator |