MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneq Structured version   Visualization version   GIF version

Theorem onomeneq 8708
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
onomeneq ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneq
StepHypRef Expression
1 php5 8705 . . . . . . . . 9 (𝐵 ∈ ω → ¬ 𝐵 ≈ suc 𝐵)
21ad2antlr 725 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵 ≈ suc 𝐵)
3 enen1 8657 . . . . . . . . 9 (𝐴𝐵 → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
43adantl 484 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
52, 4mtbird 327 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 ≈ suc 𝐵)
6 peano2 7602 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 sssucid 6268 . . . . . . . . . . . . . 14 𝐵 ⊆ suc 𝐵
8 ssdomg 8555 . . . . . . . . . . . . . 14 (suc 𝐵 ∈ ω → (𝐵 ⊆ suc 𝐵𝐵 ≼ suc 𝐵))
96, 7, 8mpisyl 21 . . . . . . . . . . . . 13 (𝐵 ∈ ω → 𝐵 ≼ suc 𝐵)
10 endomtr 8567 . . . . . . . . . . . . 13 ((𝐴𝐵𝐵 ≼ suc 𝐵) → 𝐴 ≼ suc 𝐵)
119, 10sylan2 594 . . . . . . . . . . . 12 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ≼ suc 𝐵)
1211ancoms 461 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ≼ suc 𝐵)
1312a1d 25 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
1413adantll 712 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
15 ssel 3961 . . . . . . . . . . . . . . 15 (ω ⊆ 𝐴 → (𝐵 ∈ ω → 𝐵𝐴))
1615com12 32 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → (ω ⊆ 𝐴𝐵𝐴))
1716adantr 483 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴𝐵𝐴))
18 eloni 6201 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
19 ordelsuc 7535 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2018, 19sylan2 594 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2117, 20sylibd 241 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
22 ssdomg 8555 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝐵𝐴 → suc 𝐵𝐴))
2322adantl 484 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (suc 𝐵𝐴 → suc 𝐵𝐴))
2421, 23syld 47 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2524ancoms 461 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2625adantr 483 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2714, 26jcad 515 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → (𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴)))
28 sbth 8637 . . . . . . . 8 ((𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐴 ≈ suc 𝐵)
2927, 28syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≈ suc 𝐵))
305, 29mtod 200 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ ω ⊆ 𝐴)
31 ordom 7589 . . . . . . . . 9 Ord ω
32 ordtri1 6224 . . . . . . . . 9 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3331, 18, 32sylancr 589 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3433con2bid 357 . . . . . . 7 (𝐴 ∈ On → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3534ad2antrr 724 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3630, 35mpbird 259 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
37 simplr 767 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
3836, 37jca 514 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
39 nneneq 8700 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
4039biimpa 479 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4138, 40sylancom 590 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4241ex 415 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
43 eqeng 8543 . . 3 (𝐴 ∈ On → (𝐴 = 𝐵𝐴𝐵))
4443adantr 483 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4542, 44impbid 214 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  Ord word 6190  Oncon0 6191  suc csuc 6193  ωcom 7580  cen 8506  cdom 8507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512
This theorem is referenced by:  onfin  8709  ficardom  9390  finnisoeu  9539
  Copyright terms: Public domain W3C validator