Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Structured version   Visualization version   GIF version

Theorem pmapglbx 34535
 Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 34536, where we read 𝑆 as 𝑆(𝑖). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglbx ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Distinct variable groups:   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglbx
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 34125 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad2antrr 761 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
3 pmapglb.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 eqid 2621 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 34056 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 482 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 r19.29 3065 . . . . . . . . . . 11 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → ∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆))
8 eleq1a 2693 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑦 = 𝑆𝑦𝐵))
98imp 445 . . . . . . . . . . . 12 ((𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
109rexlimivw 3022 . . . . . . . . . . 11 (∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
117, 10syl 17 . . . . . . . . . 10 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → 𝑦𝐵)
1211ex 450 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1312ad2antlr 762 . . . . . . . 8 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1413abssdv 3655 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
15 eqid 2621 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
16 pmapglb.g . . . . . . . 8 𝐺 = (glb‘𝐾)
173, 15, 16clatleglb 17047 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑝𝐵 ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
182, 6, 14, 17syl3anc 1323 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
19 vex 3189 . . . . . . . . . . . . 13 𝑧 ∈ V
20 eqeq1 2625 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑦 = 𝑆𝑧 = 𝑆))
2120rexbidv 3045 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖𝐼 𝑧 = 𝑆))
2219, 21elab 3333 . . . . . . . . . . . 12 (𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ↔ ∃𝑖𝐼 𝑧 = 𝑆)
2322imbi1i 339 . . . . . . . . . . 11 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
24 r19.23v 3016 . . . . . . . . . . 11 (∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2523, 24bitr4i 267 . . . . . . . . . 10 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2625albii 1744 . . . . . . . . 9 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
27 df-ral 2912 . . . . . . . . 9 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧))
28 ralcom4 3210 . . . . . . . . 9 (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2926, 27, 283bitr4i 292 . . . . . . . 8 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
30 nfv 1840 . . . . . . . . . . 11 𝑧 𝑝(le‘𝐾)𝑆
31 breq2 4617 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑝(le‘𝐾)𝑧𝑝(le‘𝐾)𝑆))
3230, 31ceqsalg 3216 . . . . . . . . . 10 (𝑆𝐵 → (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
3332ralimi 2947 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → ∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
34 ralbi 3061 . . . . . . . . 9 (∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆) → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3533, 34syl 17 . . . . . . . 8 (∀𝑖𝐼 𝑆𝐵 → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3629, 35syl5bb 272 . . . . . . 7 (∀𝑖𝐼 𝑆𝐵 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3736ad2antlr 762 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3818, 37bitrd 268 . . . . 5 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3938rabbidva 3176 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
40393adant3 1079 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
41 simp1 1059 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝐾 ∈ HL)
4212abssdv 3655 . . . . . 6 (∀𝑖𝐼 𝑆𝐵 → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
433, 16clatglbcl 17035 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
441, 42, 43syl2an 494 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
45443adant3 1079 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
46 pmapglb.m . . . . 5 𝑀 = (pmap‘𝐾)
473, 15, 4, 46pmapval 34523 . . . 4 ((𝐾 ∈ HL ∧ (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
4841, 45, 47syl2anc 692 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
49 iinrab 4548 . . . 4 (𝐼 ≠ ∅ → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
50493ad2ant3 1082 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
5140, 48, 503eqtr4d 2665 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
52 nfv 1840 . . . 4 𝑖 𝐾 ∈ HL
53 nfra1 2936 . . . 4 𝑖𝑖𝐼 𝑆𝐵
54 nfv 1840 . . . 4 𝑖 𝐼 ≠ ∅
5552, 53, 54nf3an 1828 . . 3 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅)
56 simpl1 1062 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
57 rspa 2925 . . . . 5 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
58573ad2antl2 1222 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝑆𝐵)
593, 15, 4, 46pmapval 34523 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6056, 58, 59syl2anc 692 . . 3 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6155, 60iineq2d 4507 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6251, 61eqtr4d 2658 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036  ∀wal 1478   = wceq 1480   ∈ wcel 1987  {cab 2607   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  {crab 2911   ⊆ wss 3555  ∅c0 3891  ∩ ciin 4486   class class class wbr 4613  ‘cfv 5847  Basecbs 15781  lecple 15869  glbcglb 16864  CLatccla 17028  Atomscatm 34030  HLchlt 34117  pmapcpmap 34263 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-lat 16967  df-clat 17029  df-ats 34034  df-hlat 34118  df-pmap 34270 This theorem is referenced by:  pmapglb  34536  pmapglb2xN  34538
 Copyright terms: Public domain W3C validator