MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmadd Structured version   Visualization version   GIF version

Theorem prnmadd 10031
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmadd ((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prnmadd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prnmax 10029 . 2 ((𝐴P𝐵𝐴) → ∃𝑦𝐴 𝐵 <Q 𝑦)
2 ltrelnq 9960 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 5325 . . . . . 6 (𝐵 <Q 𝑦 → (𝐵Q𝑦Q))
43simprd 482 . . . . 5 (𝐵 <Q 𝑦𝑦Q)
5 ltexnq 10009 . . . . . 6 (𝑦Q → (𝐵 <Q 𝑦 ↔ ∃𝑥(𝐵 +Q 𝑥) = 𝑦))
65biimpcd 239 . . . . 5 (𝐵 <Q 𝑦 → (𝑦Q → ∃𝑥(𝐵 +Q 𝑥) = 𝑦))
74, 6mpd 15 . . . 4 (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) = 𝑦)
8 eleq1a 2834 . . . . 5 (𝑦𝐴 → ((𝐵 +Q 𝑥) = 𝑦 → (𝐵 +Q 𝑥) ∈ 𝐴))
98eximdv 1995 . . . 4 (𝑦𝐴 → (∃𝑥(𝐵 +Q 𝑥) = 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴))
107, 9syl5 34 . . 3 (𝑦𝐴 → (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴))
1110rexlimiv 3165 . 2 (∃𝑦𝐴 𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
121, 11syl 17 1 ((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wex 1853  wcel 2139  wrex 3051   class class class wbr 4804  (class class class)co 6814  Qcnq 9886   +Q cplq 9889   <Q cltq 9892  Pcnp 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-omul 7735  df-er 7913  df-ni 9906  df-pli 9907  df-mi 9908  df-lti 9909  df-plpq 9942  df-mpq 9943  df-ltpq 9944  df-enq 9945  df-nq 9946  df-erq 9947  df-plq 9948  df-mq 9949  df-1nq 9950  df-ltnq 9952  df-np 10015
This theorem is referenced by:  ltexprlem1  10070  ltexprlem7  10076
  Copyright terms: Public domain W3C validator