MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmax Structured version   Visualization version   GIF version

Theorem prnmax 10417
Description: A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmax ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prnmax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2900 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
21anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴P𝑦𝐴) ↔ (𝐴P𝐵𝐴)))
3 breq1 5069 . . . . 5 (𝑦 = 𝐵 → (𝑦 <Q 𝑥𝐵 <Q 𝑥))
43rexbidv 3297 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 <Q 𝑥 ↔ ∃𝑥𝐴 𝐵 <Q 𝑥))
52, 4imbi12d 347 . . 3 (𝑦 = 𝐵 → (((𝐴P𝑦𝐴) → ∃𝑥𝐴 𝑦 <Q 𝑥) ↔ ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)))
6 elnpi 10410 . . . . . 6 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑦𝐴 (∀𝑥(𝑥 <Q 𝑦𝑥𝐴) ∧ ∃𝑥𝐴 𝑦 <Q 𝑥)))
76simprbi 499 . . . . 5 (𝐴P → ∀𝑦𝐴 (∀𝑥(𝑥 <Q 𝑦𝑥𝐴) ∧ ∃𝑥𝐴 𝑦 <Q 𝑥))
87r19.21bi 3208 . . . 4 ((𝐴P𝑦𝐴) → (∀𝑥(𝑥 <Q 𝑦𝑥𝐴) ∧ ∃𝑥𝐴 𝑦 <Q 𝑥))
98simprd 498 . . 3 ((𝐴P𝑦𝐴) → ∃𝑥𝐴 𝑦 <Q 𝑥)
105, 9vtoclg 3567 . 2 (𝐵𝐴 → ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥))
1110anabsi7 669 1 ((𝐴P𝐵𝐴) → ∃𝑥𝐴 𝐵 <Q 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  wpss 3937  c0 4291   class class class wbr 5066  Qcnq 10274   <Q cltq 10280  Pcnp 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-np 10403
This theorem is referenced by:  npomex  10418  prnmadd  10419  genpnmax  10429  1idpr  10451  ltexprlem4  10461  reclem3pr  10471  suplem1pr  10474
  Copyright terms: Public domain W3C validator