Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprelb Structured version   Visualization version   GIF version

Theorem prprelb 43727
Description: An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprelb (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))

Proof of Theorem prprelb
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prprvalpw 43726 . . . 4 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
21eleq2d 2898 . . 3 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})}))
3 eqeq1 2825 . . . . . 6 (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏}))
43anbi2d 630 . . . . 5 (𝑝 = 𝑃 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
542rexbidv 3300 . . . 4 (𝑝 = 𝑃 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
65elrab 3680 . . 3 (𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
72, 6syl6bb 289 . 2 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
8 hash2exprb 13830 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏})))
9 eleq1 2900 . . . . . . . . . 10 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
10 prelpw 5339 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
1110el2v 3501 . . . . . . . . . . 11 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)
1211biimpri 230 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉))
139, 12syl6bi 255 . . . . . . . . 9 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
1413com12 32 . . . . . . . 8 (𝑃 ∈ 𝒫 𝑉 → (𝑃 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉)))
1514adantld 493 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉)))
1615pm4.71rd 565 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
17162exbidv 1925 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
18 r2ex 3303 . . . . 5 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
1917, 18syl6bbr 291 . . . 4 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
208, 19bitr2d 282 . . 3 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ (♯‘𝑃) = 2))
2120pm5.32i 577 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
227, 21syl6bb 289 1 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  𝒫 cpw 4539  {cpr 4569  cfv 6355  2c2 11693  chash 13691  Pairspropercprpr 43723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-prpr 43724
This theorem is referenced by:  prprreueq  43731
  Copyright terms: Public domain W3C validator