Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserval2 Structured version   Visualization version   GIF version

Theorem pserval2 24146
 Description: Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypothesis
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
Assertion
Ref Expression
pserval2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥,𝑛)

Proof of Theorem pserval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
21pserval 24145 . . 3 (𝑋 ∈ ℂ → (𝐺𝑋) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))))
32fveq1d 6180 . 2 (𝑋 ∈ ℂ → ((𝐺𝑋)‘𝑁) = ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁))
4 fveq2 6178 . . . 4 (𝑦 = 𝑁 → (𝐴𝑦) = (𝐴𝑁))
5 oveq2 6643 . . . 4 (𝑦 = 𝑁 → (𝑋𝑦) = (𝑋𝑁))
64, 5oveq12d 6653 . . 3 (𝑦 = 𝑁 → ((𝐴𝑦) · (𝑋𝑦)) = ((𝐴𝑁) · (𝑋𝑁)))
7 eqid 2620 . . 3 (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦))) = (𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))
8 ovex 6663 . . 3 ((𝐴𝑁) · (𝑋𝑁)) ∈ V
96, 7, 8fvmpt 6269 . 2 (𝑁 ∈ ℕ0 → ((𝑦 ∈ ℕ0 ↦ ((𝐴𝑦) · (𝑋𝑦)))‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
103, 9sylan9eq 2674 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺𝑋)‘𝑁) = ((𝐴𝑁) · (𝑋𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481   ∈ wcel 1988   ↦ cmpt 4720  ‘cfv 5876  (class class class)co 6635  ℂcc 9919   · cmul 9926  ℕ0cn0 11277  ↑cexp 12843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-i2m1 9989  ax-1ne0 9990  ax-rrecex 9993  ax-cnre 9994 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-nn 11006  df-n0 11278 This theorem is referenced by:  radcnvlem1  24148  radcnv0  24151  dvradcnv  24156  pserulm  24157  psercn2  24158  pserdvlem2  24163  abelth  24176
 Copyright terms: Public domain W3C validator