MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pttopon Structured version   Visualization version   GIF version

Theorem pttopon 21447
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
pttopon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem pttopon
StepHypRef Expression
1 topontop 20766 . . . . 5 (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top)
21ralimi 2981 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐾 ∈ Top)
3 eqid 2651 . . . . 5 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
43fmpt 6421 . . . 4 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
52, 4sylib 208 . . 3 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥𝐴𝐾):𝐴⟶Top)
6 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
7 pttop 21433 . . . 4 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → (∏t‘(𝑥𝐴𝐾)) ∈ Top)
86, 7syl5eqel 2734 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → 𝐽 ∈ Top)
95, 8sylan2 490 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top)
10 toponuni 20767 . . . . . 6 (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = 𝐾)
1110ralimi 2981 . . . . 5 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐵 = 𝐾)
12 ixpeq2 7964 . . . . 5 (∀𝑥𝐴 𝐵 = 𝐾X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1311, 12syl 17 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1413adantl 481 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
156ptunimpt 21446 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
162, 15sylan2 490 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐾 = 𝐽)
1714, 16eqtrd 2685 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = 𝐽)
18 istopon 20765 . 2 (𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥𝐴 𝐵 = 𝐽))
199, 17, 18sylanbrc 699 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941   cuni 4468  cmpt 4762  wf 5922  cfv 5926  Xcixp 7950  tcpt 16146  Topctop 20746  TopOnctopon 20763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ixp 7951  df-en 7998  df-fin 8001  df-fi 8358  df-topgen 16151  df-pt 16152  df-top 20747  df-topon 20764  df-bases 20798
This theorem is referenced by:  pttoponconst  21448  ptclsg  21466  dfac14lem  21468  ptcnp  21473  prdstps  21480
  Copyright terms: Public domain W3C validator