MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pttoponconst Structured version   Visualization version   GIF version

Theorem pttoponconst 22205
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
ptuniconst.2 𝐽 = (∏t‘(𝐴 × {𝑅}))
Assertion
Ref Expression
pttoponconst ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))

Proof of Theorem pttoponconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ (TopOn‘𝑋))
21ralrimivw 3183 . . 3 (𝑅 ∈ (TopOn‘𝑋) → ∀𝑥𝐴 𝑅 ∈ (TopOn‘𝑋))
3 ptuniconst.2 . . . . 5 𝐽 = (∏t‘(𝐴 × {𝑅}))
4 fconstmpt 5614 . . . . . 6 (𝐴 × {𝑅}) = (𝑥𝐴𝑅)
54fveq2i 6673 . . . . 5 (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝑥𝐴𝑅))
63, 5eqtri 2844 . . . 4 𝐽 = (∏t‘(𝑥𝐴𝑅))
76pttopon 22204 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝑋))
82, 7sylan2 594 . 2 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝑋))
9 toponmax 21534 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑋𝑅)
10 ixpconstg 8470 . . . 4 ((𝐴𝑉𝑋𝑅) → X𝑥𝐴 𝑋 = (𝑋m 𝐴))
119, 10sylan2 594 . . 3 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → X𝑥𝐴 𝑋 = (𝑋m 𝐴))
1211fveq2d 6674 . 2 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → (TopOn‘X𝑥𝐴 𝑋) = (TopOn‘(𝑋m 𝐴)))
138, 12eleqtrd 2915 1 ((𝐴𝑉𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋m 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  {csn 4567  cmpt 5146   × cxp 5553  cfv 6355  (class class class)co 7156  m cmap 8406  Xcixp 8461  tcpt 16712  TopOnctopon 21518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-fin 8513  df-fi 8875  df-topgen 16717  df-pt 16718  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  ptuniconst  22206  pt1hmeo  22414  tmdgsum  22703  efmndtmd  22709  symgtgp  22714  poimir  34940  broucube  34941
  Copyright terms: Public domain W3C validator