MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndtmd Structured version   Visualization version   GIF version

Theorem efmndtmd 22705
Description: The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 22710. (Contributed by AV, 23-Feb-2024.)
Hypothesis
Ref Expression
efmndtmd.g 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndtmd (𝐴𝑉𝑀 ∈ TopMnd)

Proof of Theorem efmndtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmndtmd.g . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18050 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 eqid 2820 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
41, 3efmndtopn 18044 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
5 distopon 21601 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
6 eqid 2820 . . . . . . 7 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
76pttoponconst 22201 . . . . . 6 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
85, 7mpdan 685 . . . . 5 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
91, 3efmndbas 18032 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
109eleq2i 2903 . . . . . . . 8 (𝑥 ∈ (Base‘𝑀) ↔ 𝑥 ∈ (𝐴m 𝐴))
1110biimpi 218 . . . . . . 7 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴))
1211a1i 11 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴)))
1312ssrdv 3970 . . . . 5 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝐴m 𝐴))
14 resttopon 21765 . . . . 5 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝑀) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
158, 13, 14syl2anc 586 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
164, 15eqeltrrd 2913 . . 3 (𝐴𝑉 → (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
17 eqid 2820 . . . 4 (TopOpen‘𝑀) = (TopOpen‘𝑀)
183, 17istps 21538 . . 3 (𝑀 ∈ TopSp ↔ (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
1916, 18sylibr 236 . 2 (𝐴𝑉𝑀 ∈ TopSp)
20 eqid 2820 . . . . . . 7 (+g𝑀) = (+g𝑀)
211, 3, 20efmndplusg 18041 . . . . . 6 (+g𝑀) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦))
22 eqid 2820 . . . . . . 7 ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))
23 distop 21599 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
24 eqid 2820 . . . . . . . . 9 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
2524xkotopon 22204 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
2623, 23, 25syl2anc 586 . . . . . . 7 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
27 cndis 21895 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
285, 27mpdan 685 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
2913, 28sseqtrrd 4005 . . . . . . 7 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
30 disllycmp 22102 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
31 llynlly 22081 . . . . . . . . 9 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3230, 31syl 17 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
33 eqid 2820 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3433xkococn 22264 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3523, 32, 23, 34syl3anc 1366 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3622, 26, 29, 22, 26, 29, 35cnmpt2res 22281 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3721, 36eqeltrid 2916 . . . . 5 (𝐴𝑉 → (+g𝑀) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
38 xkopt 22259 . . . . . . . . . 10 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
3923, 38mpancom 686 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4039oveq1d 7168 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)))
4140, 4eqtrd 2855 . . . . . . 7 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
4241, 41oveq12d 7171 . . . . . 6 (𝐴𝑉 → (((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = ((TopOpen‘𝑀) ×t (TopOpen‘𝑀)))
4342oveq1d 7168 . . . . 5 (𝐴𝑉 → ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4437, 43eleqtrd 2914 . . . 4 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
45 vex 3496 . . . . . . . . . . 11 𝑥 ∈ V
46 vex 3496 . . . . . . . . . . 11 𝑦 ∈ V
4745, 46coex 7632 . . . . . . . . . 10 (𝑥𝑦) ∈ V
4821, 47fnmpoi 7765 . . . . . . . . 9 (+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀))
49 eqid 2820 . . . . . . . . . 10 (+𝑓𝑀) = (+𝑓𝑀)
503, 20, 49plusfeq 17856 . . . . . . . . 9 ((+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) → (+𝑓𝑀) = (+g𝑀))
5148, 50ax-mp 5 . . . . . . . 8 (+𝑓𝑀) = (+g𝑀)
5251eqcomi 2829 . . . . . . 7 (+g𝑀) = (+𝑓𝑀)
533, 52mndplusf 17925 . . . . . 6 (𝑀 ∈ Mnd → (+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀))
54 frn 6517 . . . . . 6 ((+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀) → ran (+g𝑀) ⊆ (Base‘𝑀))
552, 53, 543syl 18 . . . . 5 (𝐴𝑉 → ran (+g𝑀) ⊆ (Base‘𝑀))
56 cnrest2 21890 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝑀) ⊆ (Base‘𝑀) ∧ (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5726, 55, 29, 56syl3anc 1366 . . . 4 (𝐴𝑉 → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5844, 57mpbid 234 . . 3 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))))
5941oveq2d 7169 . . 3 (𝐴𝑉 → (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6058, 59eleqtrd 2914 . 2 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6152, 17istmd 22678 . 2 (𝑀 ∈ TopMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀))))
622, 19, 60, 61syl3anbrc 1338 1 (𝐴𝑉𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  wss 3933  𝒫 cpw 4536  {csn 4564   × cxp 5550  ran crn 5553  ccom 5556   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7153  cmpo 7155  m cmap 8403  Basecbs 16479  +gcplusg 16561  t crest 16690  TopOpenctopn 16691  tcpt 16708  +𝑓cplusf 17845  Mndcmnd 17907  EndoFMndcefmnd 18029  Topctop 21497  TopOnctopon 21514  TopSpctps 21536   Cn ccn 21828  Compccmp 21990  Locally clly 22068  𝑛-Locally cnlly 22069   ×t ctx 22164  ko cxko 22165  TopMndctmd 22674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-iin 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fi 8872  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-3 11699  df-4 11700  df-5 11701  df-6 11702  df-7 11703  df-8 11704  df-9 11705  df-n0 11896  df-z 11980  df-uz 12242  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-tset 16580  df-rest 16692  df-topn 16693  df-topgen 16713  df-pt 16714  df-plusf 17847  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-efmnd 18030  df-top 21498  df-topon 21515  df-topsp 21537  df-bases 21550  df-ntr 21624  df-nei 21702  df-cn 21831  df-cmp 21991  df-lly 22070  df-nlly 22071  df-tx 22166  df-xko 22167  df-tmd 22676
This theorem is referenced by:  symgtgp  22710
  Copyright terms: Public domain W3C validator