Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   GIF version

Theorem qqhval2 29832
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Distinct variable groups:   / ,𝑞   𝐵,𝑞   𝐿,𝑞   𝑅,𝑞

Proof of Theorem qqhval2
Dummy variables 𝑒 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3201 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ V)
21adantr 481 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ V)
3 qqhval2.1 . . . 4 / = (/r𝑅)
4 eqid 2621 . . . 4 (1r𝑅) = (1r𝑅)
5 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
63, 4, 5qqhval 29824 . . 3 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
72, 6syl 17 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
8 eqidd 2622 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ℤ = ℤ)
9 qqhval2.0 . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2621 . . . . 5 (0g𝑅) = (0g𝑅)
119, 5, 10zrhunitpreima 29828 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0}))
12 mpt2eq12 6675 . . . 4 ((ℤ = ℤ ∧ (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
138, 11, 12syl2anc 692 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1413rneqd 5318 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
15 nfv 1840 . . . 4 𝑒(𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0)
16 nfab1 2763 . . . 4 𝑒{𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
17 nfcv 2761 . . . 4 𝑒{⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
18 simpr 477 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
19 zssq 11747 . . . . . . . . . . . 12 ℤ ⊆ ℚ
20 simplrl 799 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℤ)
2119, 20sseldi 3585 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℚ)
22 simplrr 800 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ (ℤ ∖ {0}))
2322eldifad 3571 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℤ)
2419, 23sseldi 3585 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℚ)
2522eldifbd 3572 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ¬ 𝑦 ∈ {0})
26 velsn 4169 . . . . . . . . . . . . 13 (𝑦 ∈ {0} ↔ 𝑦 = 0)
2726necon3bbii 2837 . . . . . . . . . . . 12 𝑦 ∈ {0} ↔ 𝑦 ≠ 0)
2825, 27sylib 208 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ≠ 0)
29 qdivcl 11761 . . . . . . . . . . 11 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℚ)
3021, 24, 28, 29syl3anc 1323 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (𝑥 / 𝑦) ∈ ℚ)
31 simplll 797 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑅 ∈ DivRing)
32 simpllr 798 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (chr‘𝑅) = 0)
339, 3, 5qqhval2lem 29831 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))) = ((𝐿𝑥) / (𝐿𝑦)))
3433eqcomd 2627 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
3531, 32, 20, 23, 28, 34syl23anc 1330 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
36 ovex 6638 . . . . . . . . . . 11 (𝑥 / 𝑦) ∈ V
37 ovex 6638 . . . . . . . . . . 11 ((𝐿𝑥) / (𝐿𝑦)) ∈ V
38 opeq12 4377 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ⟨𝑞, 𝑠⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
3938eqeq2d 2631 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑒 = ⟨𝑞, 𝑠⟩ ↔ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
40 simpl 473 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑞 = (𝑥 / 𝑦))
4140eleq1d 2683 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑞 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
42 simpr 477 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑠 = ((𝐿𝑥) / (𝐿𝑦)))
4340fveq2d 6157 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (numer‘𝑞) = (numer‘(𝑥 / 𝑦)))
4443fveq2d 6157 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘(𝑥 / 𝑦))))
4540fveq2d 6157 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (denom‘𝑞) = (denom‘(𝑥 / 𝑦)))
4645fveq2d 6157 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘(𝑥 / 𝑦))))
4744, 46oveq12d 6628 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
4842, 47eqeq12d 2636 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ↔ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))
4941, 48anbi12d 746 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))))
5039, 49anbi12d 746 . . . . . . . . . . 11 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) ↔ (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))))
5136, 37, 50spc2ev 3290 . . . . . . . . . 10 ((𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5218, 30, 35, 51syl12anc 1321 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5352ex 450 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5453rexlimdvva 3032 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5554imp 445 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
56 19.42vv 1917 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) ↔ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
57 simprrl 803 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 ∈ ℚ)
58 qnumcl 15383 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
5957, 58syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (numer‘𝑞) ∈ ℤ)
60 qdencl 15384 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
6157, 60syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℕ)
6261nnzd 11433 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℤ)
63 nnne0 11005 . . . . . . . . . . 11 ((denom‘𝑞) ∈ ℕ → (denom‘𝑞) ≠ 0)
64 nelsn 4188 . . . . . . . . . . 11 ((denom‘𝑞) ≠ 0 → ¬ (denom‘𝑞) ∈ {0})
6561, 63, 643syl 18 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ¬ (denom‘𝑞) ∈ {0})
6662, 65eldifd 3570 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
67 simprl 793 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨𝑞, 𝑠⟩)
68 qeqnumdivden 15389 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6957, 68syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
70 simprrr 804 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
7169, 70opeq12d 4383 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ⟨𝑞, 𝑠⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
7267, 71eqtrd 2655 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
73 oveq1 6617 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → (𝑥 / 𝑦) = ((numer‘𝑞) / 𝑦))
74 fveq2 6153 . . . . . . . . . . . . 13 (𝑥 = (numer‘𝑞) → (𝐿𝑥) = (𝐿‘(numer‘𝑞)))
7574oveq1d 6625 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)))
7673, 75opeq12d 4383 . . . . . . . . . . 11 (𝑥 = (numer‘𝑞) → ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩)
7776eqeq2d 2631 . . . . . . . . . 10 (𝑥 = (numer‘𝑞) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩))
78 oveq2 6618 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((numer‘𝑞) / 𝑦) = ((numer‘𝑞) / (denom‘𝑞)))
79 fveq2 6153 . . . . . . . . . . . . 13 (𝑦 = (denom‘𝑞) → (𝐿𝑦) = (𝐿‘(denom‘𝑞)))
8079oveq2d 6626 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
8178, 80opeq12d 4383 . . . . . . . . . . 11 (𝑦 = (denom‘𝑞) → ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
8281eqeq2d 2631 . . . . . . . . . 10 (𝑦 = (denom‘𝑞) → (𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩))
8377, 82rspc2ev 3312 . . . . . . . . 9 (((numer‘𝑞) ∈ ℤ ∧ (denom‘𝑞) ∈ (ℤ ∖ {0}) ∧ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8459, 66, 72, 83syl3anc 1323 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8584exlimivv 1857 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8656, 85sylbir 225 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8755, 86impbida 876 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
88 abid 2609 . . . . 5 (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
89 elopab 4948 . . . . 5 (𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))} ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
9087, 88, 893bitr4g 303 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ 𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}))
9115, 16, 17, 90eqrd 3606 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))})
92 eqid 2621 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
9392rnmpt2 6730 . . 3 ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
94 df-mpt 4680 . . 3 (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
9591, 93, 943eqtr4g 2680 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
967, 14, 953eqtrd 2659 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wrex 2908  Vcvv 3189  cdif 3556  {csn 4153  cop 4159  {copab 4677  cmpt 4678  ccnv 5078  ran crn 5080  cima 5082  cfv 5852  (class class class)co 6610  cmpt2 6612  0cc0 9888   / cdiv 10636  cn 10972  cz 11329  cq 11740  numercnumer 15376  denomcdenom 15377  Basecbs 15792  0gc0g 16032  1rcur 18433  Unitcui 18571  /rcdvr 18614  DivRingcdr 18679  ℤRHomczrh 19780  chrcchr 19782  ℚHomcqqh 29822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-fz 12277  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-gcd 15152  df-numer 15378  df-denom 15379  df-gz 15569  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-od 17880  df-cmn 18127  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-dvr 18615  df-rnghom 18647  df-drng 18681  df-subrg 18710  df-cnfld 19679  df-zring 19751  df-zrh 19784  df-chr 19786  df-qqh 29823
This theorem is referenced by:  qqhvval  29833  qqhf  29836
  Copyright terms: Public domain W3C validator