Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprss Structured version   Visualization version   GIF version

Theorem reprss 31888
Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprss.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
reprss (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))

Proof of Theorem reprss
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11644 . . . . . . . 8 ℕ ∈ V
21a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
3 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5228 . . . . . 6 (𝜑𝐴 ∈ V)
5 reprss.1 . . . . . 6 (𝜑𝐵𝐴)
6 mapss 8453 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐴) → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
74, 5, 6syl2anc 586 . . . . 5 (𝜑 → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
87sselda 3967 . . . 4 ((𝜑𝑐 ∈ (𝐵m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
98adantrr 715 . . 3 ((𝜑 ∧ (𝑐 ∈ (𝐵m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
109rabss3d 30276 . 2 (𝜑 → {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
115, 3sstrd 3977 . . 3 (𝜑𝐵 ⊆ ℕ)
12 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
13 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
1411, 12, 13reprval 31881 . 2 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
153, 12, 13reprval 31881 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
1610, 14, 153sstr4d 4014 1 (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  wss 3936  cfv 6355  (class class class)co 7156  m cmap 8406  0cc0 10537  cn 11638  0cn0 11898  cz 11982  ..^cfzo 13034  Σcsu 15042  reprcrepr 31879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-map 8408  df-neg 10873  df-nn 11639  df-z 11983  df-seq 13371  df-sum 15043  df-repr 31880
This theorem is referenced by:  hashreprin  31891  reprinfz1  31893  tgoldbachgtde  31931
  Copyright terms: Public domain W3C validator