Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapss Structured version   Visualization version   GIF version

Theorem mapss 7942
 Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss ((𝐵𝑉𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))

Proof of Theorem mapss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 7921 . . . . . 6 (𝑓 ∈ (𝐴𝑚 𝐶) → 𝑓:𝐶𝐴)
21adantl 481 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝑓:𝐶𝐴)
3 simplr 807 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝐴𝐵)
42, 3fssd 6095 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝑓:𝐶𝐵)
5 simpll 805 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝐵𝑉)
6 elmapex 7920 . . . . . . 7 (𝑓 ∈ (𝐴𝑚 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simprd 478 . . . . . 6 (𝑓 ∈ (𝐴𝑚 𝐶) → 𝐶 ∈ V)
87adantl 481 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝐶 ∈ V)
95, 8elmapd 7913 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → (𝑓 ∈ (𝐵𝑚 𝐶) ↔ 𝑓:𝐶𝐵))
104, 9mpbird 247 . . 3 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝑓 ∈ (𝐵𝑚 𝐶))
1110ex 449 . 2 ((𝐵𝑉𝐴𝐵) → (𝑓 ∈ (𝐴𝑚 𝐶) → 𝑓 ∈ (𝐵𝑚 𝐶)))
1211ssrdv 3642 1 ((𝐵𝑉𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 2030  Vcvv 3231   ⊆ wss 3607  ⟶wf 5922  (class class class)co 6690   ↑𝑚 cmap 7899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901 This theorem is referenced by:  mapdom1  8166  ssfin3ds  9190  ingru  9675  resspsrbas  19463  resspsradd  19464  resspsrmul  19465  plyss  24000  eulerpartlem1  30557  eulerpartlemn  30571  reprss  30823  poimirlem29  33568  poimirlem30  33569  poimirlem31  33570  poimirlem32  33571  poimir  33572  broucube  33573  diophrw  37639  diophin  37653  diophun  37654  eq0rabdioph  37657  eqrabdioph  37658  rabdiophlem1  37682  diophren  37694  k0004ss1  38766  ixpssmapc  39557  mapss2  39711  difmap  39713  inmap  39715  mapssbi  39719  iunmapss  39721  dvnprodlem2  40480  etransclem24  40793  etransclem25  40794  etransclem26  40795  etransclem28  40797  etransclem35  40804  etransclem37  40806  qndenserrnbllem  40832  qndenserrn  40837  hoissrrn  41084  hoissrrn2  41113  hspmbl  41164  opnvonmbllem2  41168  ovolval2lem  41178  ovolval2  41179  ovolval3  41182  ovolval4lem2  41185  ovnovollem3  41193  vonvolmbl  41196  smfmullem4  41322
 Copyright terms: Public domain W3C validator