![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version |
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 7921 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝑓:𝐶⟶𝐴) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓:𝐶⟶𝐴) |
3 | simplr 807 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | fssd 6095 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓:𝐶⟶𝐵) |
5 | simpll 805 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐵 ∈ 𝑉) | |
6 | elmapex 7920 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
7 | 6 | simprd 478 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝐶 ∈ V) |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐶 ∈ V) |
9 | 5, 8 | elmapd 7913 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → (𝑓 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
10 | 4, 9 | mpbird 247 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓 ∈ (𝐵 ↑𝑚 𝐶)) |
11 | 10 | ex 449 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝑓 ∈ (𝐵 ↑𝑚 𝐶))) |
12 | 11 | ssrdv 3642 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ⟶wf 5922 (class class class)co 6690 ↑𝑚 cmap 7899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 |
This theorem is referenced by: mapdom1 8166 ssfin3ds 9190 ingru 9675 resspsrbas 19463 resspsradd 19464 resspsrmul 19465 plyss 24000 eulerpartlem1 30557 eulerpartlemn 30571 reprss 30823 poimirlem29 33568 poimirlem30 33569 poimirlem31 33570 poimirlem32 33571 poimir 33572 broucube 33573 diophrw 37639 diophin 37653 diophun 37654 eq0rabdioph 37657 eqrabdioph 37658 rabdiophlem1 37682 diophren 37694 k0004ss1 38766 ixpssmapc 39557 mapss2 39711 difmap 39713 inmap 39715 mapssbi 39719 iunmapss 39721 dvnprodlem2 40480 etransclem24 40793 etransclem25 40794 etransclem26 40795 etransclem28 40797 etransclem35 40804 etransclem37 40806 qndenserrnbllem 40832 qndenserrn 40837 hoissrrn 41084 hoissrrn2 41113 hspmbl 41164 opnvonmbllem2 41168 ovolval2lem 41178 ovolval2 41179 ovolval3 41182 ovolval4lem2 41185 ovnovollem3 41193 vonvolmbl 41196 smfmullem4 41322 |
Copyright terms: Public domain | W3C validator |