Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprval Structured version   Visualization version   GIF version

Theorem reprval 31902
Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴 (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprval (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprval
Dummy variables 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-repr 31901 . . 3 repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}))
2 oveq2 7157 . . . . . 6 (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆))
32oveq2d 7165 . . . . 5 (𝑠 = 𝑆 → (𝑏m (0..^𝑠)) = (𝑏m (0..^𝑆)))
42sumeq1d 15053 . . . . . 6 (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
54eqeq1d 2822 . . . . 5 (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚))
63, 5rabeqbidv 3482 . . . 4 (𝑠 = 𝑆 → {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚})
76mpoeq3dv 7226 . . 3 (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
8 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
9 nnex 11637 . . . . . 6 ℕ ∈ V
109pwex 5274 . . . . 5 𝒫 ℕ ∈ V
11 zex 11984 . . . . 5 ℤ ∈ V
1210, 11mpoex 7770 . . . 4 (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V
1312a1i 11 . . 3 (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V)
141, 7, 8, 13fvmptd3 6784 . 2 (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
15 simprl 769 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑏 = 𝐴)
1615oveq1d 7164 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (𝑏m (0..^𝑆)) = (𝐴m (0..^𝑆)))
17 simprr 771 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑚 = 𝑀)
1817eqeq2d 2831 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
1916, 18rabeqbidv 3482 . 2 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
209a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
21 reprval.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2220, 21ssexd 5221 . . 3 (𝜑𝐴 ∈ V)
2322, 21elpwd 4540 . 2 (𝜑𝐴 ∈ 𝒫 ℕ)
24 reprval.m . 2 (𝜑𝑀 ∈ ℤ)
25 ovex 7182 . . . 4 (𝐴m (0..^𝑆)) ∈ V
2625rabex 5228 . . 3 {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V
2726a1i 11 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V)
2814, 19, 23, 24, 27ovmpod 7295 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {crab 3141  Vcvv 3491  wss 3929  𝒫 cpw 4532  cfv 6348  (class class class)co 7149  cmpo 7151  m cmap 8399  0cc0 10530  cn 11631  0cn0 11891  cz 11975  ..^cfzo 13030  Σcsu 15037  reprcrepr 31900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-neg 10866  df-nn 11632  df-z 11976  df-seq 13367  df-sum 15038  df-repr 31901
This theorem is referenced by:  repr0  31903  reprf  31904  reprsum  31905  reprsuc  31907  reprfi  31908  reprss  31909  reprinrn  31910  reprlt  31911  reprgt  31913  reprinfz1  31914  reprpmtf1o  31918  reprdifc  31919  breprexplema  31922
  Copyright terms: Public domain W3C validator