MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanuz Structured version   Visualization version   GIF version

Theorem rexanuz 14705
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable groups:   𝑗,𝑘   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3170 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
21rexbii 3247 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
3 r19.40 3346 . . 3 (∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
42, 3sylbi 219 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
5 uzf 12247 . . . 4 :ℤ⟶𝒫 ℤ
6 ffn 6514 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7 raleq 3405 . . . . 5 (𝑥 = (ℤ𝑗) → (∀𝑘𝑥 𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
87rexrn 6853 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
95, 6, 8mp2b 10 . . 3 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
10 raleq 3405 . . . . 5 (𝑦 = (ℤ𝑗) → (∀𝑘𝑦 𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜓))
1110rexrn 6853 . . . 4 (ℤ Fn ℤ → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
125, 6, 11mp2b 10 . . 3 (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓)
13 uzin2 14704 . . . . . . . . 9 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
14 inss1 4205 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑥
15 ssralv 4033 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑥 → (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑))
1614, 15ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑)
17 inss2 4206 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑦
18 ssralv 4033 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑦 → (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓)
2016, 19anim12i 614 . . . . . . . . . 10 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
21 r19.26 3170 . . . . . . . . . 10 (∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓) ↔ (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
2220, 21sylibr 236 . . . . . . . . 9 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓))
23 raleq 3405 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)))
2423rspcev 3623 . . . . . . . . 9 (((𝑥𝑦) ∈ ran ℤ ∧ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2513, 22, 24syl2an 597 . . . . . . . 8 (((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) ∧ (∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2625an4s 658 . . . . . . 7 (((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) ∧ (𝑦 ∈ ran ℤ ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2726rexlimdvaa 3285 . . . . . 6 ((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2827rexlimiva 3281 . . . . 5 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2928imp 409 . . . 4 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
30 raleq 3405 . . . . . 6 (𝑧 = (ℤ𝑗) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
3130rexrn 6853 . . . . 5 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
325, 6, 31mp2b 10 . . . 4 (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
3329, 32sylib 220 . . 3 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
349, 12, 33syl2anbr 600 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
354, 34impbii 211 1 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3138  wrex 3139  cin 3935  wss 3936  𝒫 cpw 4539  ran crn 5556   Fn wfn 6350  wf 6351  cfv 6355  cz 11982  cuz 12244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-neg 10873  df-z 11983  df-uz 12245
This theorem is referenced by:  rexfiuz  14707  rexuz3  14708  rexanuz2  14709
  Copyright terms: Public domain W3C validator