Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprc Structured version   Visualization version   GIF version

Theorem rusgrprc 26363
 Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgrprc {𝑔𝑔 RegUSGraph 0} ∉ V

Proof of Theorem rusgrprc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 rgrusgrprc 26362 . 2 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
2 vex 3189 . . . . . . 7 𝑔 ∈ V
3 0xnn0 11316 . . . . . . 7 0 ∈ ℕ0*
4 eqid 2621 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
5 eqid 2621 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
64, 5isrusgr0 26339 . . . . . . 7 ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
72, 3, 6mp2an 707 . . . . . 6 (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
8 3ancomb 1045 . . . . . 6 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*))
9 df-3an 1038 . . . . . . 7 ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ∧ 0 ∈ ℕ0*))
103, 9mpbiran2 953 . . . . . 6 ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
117, 8, 103bitri 286 . . . . 5 (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
1211abbii 2736 . . . 4 {𝑔𝑔 RegUSGraph 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)}
13 df-rab 2916 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)}
1412, 13eqtr4i 2646 . . 3 {𝑔𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0}
15 neleq1 2898 . . 3 ({𝑔𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} → ({𝑔𝑔 RegUSGraph 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V))
1614, 15ax-mp 5 . 2 ({𝑔𝑔 RegUSGraph 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V)
171, 16mpbir 221 1 {𝑔𝑔 RegUSGraph 0} ∉ V
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {cab 2607   ∉ wnel 2893  ∀wral 2907  {crab 2911  Vcvv 3186   class class class wbr 4615  ‘cfv 5849  0cc0 9883  ℕ0*cxnn0 11310  Vtxcvtx 25781   USGraph cusgr 25944  VtxDegcvtxdg 26255   RegUSGraph crusgr 26329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-n0 11240  df-xnn0 11311  df-z 11325  df-uz 11635  df-xadd 11894  df-fz 12272  df-hash 13061  df-iedg 25784  df-edg 25847  df-uhgr 25856  df-upgr 25880  df-uspgr 25945  df-usgr 25946  df-vtxdg 26256  df-rgr 26330  df-rusgr 26331 This theorem is referenced by:  rgrprc  26364
 Copyright terms: Public domain W3C validator