MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem4pr Structured version   Visualization version   GIF version

Theorem distrlem4pr 10448
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem4pr (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝐶,𝑦,𝑧,𝑓

Proof of Theorem distrlem4pr
Dummy variables 𝑤 𝑣 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1188 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐵P)
2 simprlr 778 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦𝐵)
3 elprnq 10413 . . . . 5 ((𝐵P𝑦𝐵) → 𝑦Q)
41, 2, 3syl2anc 586 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦Q)
5 simp1 1132 . . . . 5 ((𝐴P𝐵P𝐶P) → 𝐴P)
6 simprl 769 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑓𝐴)
7 elprnq 10413 . . . . 5 ((𝐴P𝑓𝐴) → 𝑓Q)
85, 6, 7syl2an 597 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓Q)
9 simpl3 1189 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐶P)
10 simprrr 780 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧𝐶)
11 elprnq 10413 . . . . 5 ((𝐶P𝑧𝐶) → 𝑧Q)
129, 10, 11syl2anc 586 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧Q)
13 vex 3497 . . . . . 6 𝑥 ∈ V
14 vex 3497 . . . . . 6 𝑓 ∈ V
15 ltmnq 10394 . . . . . 6 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
16 vex 3497 . . . . . 6 𝑦 ∈ V
17 mulcomnq 10375 . . . . . 6 (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤)
1813, 14, 15, 16, 17caovord2 7360 . . . . 5 (𝑦Q → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦)))
19 mulclnq 10369 . . . . . 6 ((𝑓Q𝑧Q) → (𝑓 ·Q 𝑧) ∈ Q)
20 ovex 7189 . . . . . . 7 (𝑥 ·Q 𝑦) ∈ V
21 ovex 7189 . . . . . . 7 (𝑓 ·Q 𝑦) ∈ V
22 ltanq 10393 . . . . . . 7 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
23 ovex 7189 . . . . . . 7 (𝑓 ·Q 𝑧) ∈ V
24 addcomnq 10373 . . . . . . 7 (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤)
2520, 21, 22, 23, 24caovord2 7360 . . . . . 6 ((𝑓 ·Q 𝑧) ∈ Q → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2619, 25syl 17 . . . . 5 ((𝑓Q𝑧Q) → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2718, 26sylan9bb 512 . . . 4 ((𝑦Q ∧ (𝑓Q𝑧Q)) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
284, 8, 12, 27syl12anc 834 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
29 simpl1 1187 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐴P)
30 addclpr 10440 . . . . . . 7 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
31303adant1 1126 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
3231adantr 483 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐵 +P 𝐶) ∈ P)
33 mulclpr 10442 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
3429, 32, 33syl2anc 586 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
35 distrnq 10383 . . . . 5 (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))
36 simprrl 779 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓𝐴)
37 df-plp 10405 . . . . . . . . 9 +P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 +Q )})
38 addclnq 10367 . . . . . . . . 9 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
3937, 38genpprecl 10423 . . . . . . . 8 ((𝐵P𝐶P) → ((𝑦𝐵𝑧𝐶) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)))
4039imp 409 . . . . . . 7 (((𝐵P𝐶P) ∧ (𝑦𝐵𝑧𝐶)) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
411, 9, 2, 10, 40syl22anc 836 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
42 df-mp 10406 . . . . . . . 8 ·P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 ·Q )})
43 mulclnq 10369 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
4442, 43genpprecl 10423 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4544imp 409 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4629, 32, 36, 41, 45syl22anc 836 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4735, 46eqeltrrid 2918 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
48 prcdnq 10415 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4934, 47, 48syl2anc 586 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
5028, 49sylbid 242 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
51 simpll 765 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑥𝐴)
52 elprnq 10413 . . . . 5 ((𝐴P𝑥𝐴) → 𝑥Q)
535, 51, 52syl2an 597 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥Q)
54 vex 3497 . . . . . 6 𝑧 ∈ V
5514, 13, 15, 54, 17caovord2 7360 . . . . 5 (𝑧Q → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧)))
56 mulclnq 10369 . . . . . 6 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) ∈ Q)
57 ltanq 10393 . . . . . 6 ((𝑥 ·Q 𝑦) ∈ Q → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5856, 57syl 17 . . . . 5 ((𝑥Q𝑦Q) → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5955, 58sylan9bbr 513 . . . 4 (((𝑥Q𝑦Q) ∧ 𝑧Q) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
6053, 4, 12, 59syl21anc 835 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
61 distrnq 10383 . . . . 5 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
62 simprll 777 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥𝐴)
6342, 43genpprecl 10423 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6463imp 409 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6529, 32, 62, 41, 64syl22anc 836 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6661, 65eqeltrrid 2918 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
67 prcdnq 10415 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6834, 66, 67syl2anc 586 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6960, 68sylbid 242 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
70 ltsonq 10391 . . . . 5 <Q Or Q
71 sotrieq 5502 . . . . 5 (( <Q Or Q ∧ (𝑥Q𝑓Q)) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7270, 71mpan 688 . . . 4 ((𝑥Q𝑓Q) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7353, 8, 72syl2anc 586 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
74 oveq1 7163 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧))
7574oveq2d 7172 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7661, 75syl5eq 2868 . . . . 5 (𝑥 = 𝑓 → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7776eleq1d 2897 . . . 4 (𝑥 = 𝑓 → ((𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7865, 77syl5ibcom 247 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7973, 78sylbird 262 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
8050, 69, 79ecase3d 1029 1 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wcel 2114   class class class wbr 5066   Or wor 5473  (class class class)co 7156  Qcnq 10274   +Q cplq 10277   ·Q cmq 10278   <Q cltq 10280  Pcnp 10281   +P cpp 10283   ·P cmp 10284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-plp 10405  df-mp 10406
This theorem is referenced by:  distrlem5pr  10449
  Copyright terms: Public domain W3C validator