HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  staddi Structured version   Visualization version   GIF version

Theorem staddi 29075
Description: If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
Assertion
Ref Expression
staddi (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))

Proof of Theorem staddi
StepHypRef Expression
1 stle.1 . . . . . . 7 𝐴C
2 stcl 29045 . . . . . . 7 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
4 stle.2 . . . . . . 7 𝐵C
5 stcl 29045 . . . . . . 7 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
64, 5mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
73, 6readdcld 10054 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ)
8 ltne 10119 . . . . . 6 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → 2 ≠ ((𝑆𝐴) + (𝑆𝐵)))
98necomd 2846 . . . . 5 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
107, 9sylan 488 . . . 4 ((𝑆 ∈ States ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
1110ex 450 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) < 2 → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2))
1211necon2bd 2807 . 2 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → ¬ ((𝑆𝐴) + (𝑆𝐵)) < 2))
13 1re 10024 . . . . . . . . 9 1 ∈ ℝ
1413a1i 11 . . . . . . . 8 (𝑆 ∈ States → 1 ∈ ℝ)
15 stle1 29054 . . . . . . . . 9 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
164, 15mpi 20 . . . . . . . 8 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
176, 14, 3, 16leadd2dd 10627 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
1817adantr 481 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
19 ltadd1 10480 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + 1) < (1 + 1)))
2019biimpd 219 . . . . . . . 8 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
213, 14, 14, 20syl3anc 1324 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
2221imp 445 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + 1) < (1 + 1))
23 readdcl 10004 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) + 1) ∈ ℝ)
243, 13, 23sylancl 693 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + 1) ∈ ℝ)
2513, 13readdcli 10038 . . . . . . . . 9 (1 + 1) ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
27 lelttr 10113 . . . . . . . 8 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
287, 24, 26, 27syl3anc 1324 . . . . . . 7 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
2928adantr 481 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
3018, 22, 29mp2and 714 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1))
31 df-2 11064 . . . . 5 2 = (1 + 1)
3230, 31syl6breqr 4686 . . . 4 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < 2)
3332ex 450 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (𝑆𝐵)) < 2))
3433con3d 148 . 2 (𝑆 ∈ States → (¬ ((𝑆𝐴) + (𝑆𝐵)) < 2 → ¬ (𝑆𝐴) < 1))
35 stle1 29054 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
361, 35mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
37 leloe 10109 . . . . 5 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
383, 13, 37sylancl 693 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
3936, 38mpbid 222 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
4039ord 392 . 2 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
4112, 34, 403syld 60 1 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cfv 5876  (class class class)co 6635  cr 9920  1c1 9922   + caddc 9924   < clt 10059  cle 10060  2c2 11055   C cch 27756  Statescst 27789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-hilex 27826
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-2 11064  df-icc 12167  df-sh 28034  df-ch 28048  df-st 29040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator