MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om2 Structured version   Visualization version   GIF version

Theorem tskr1om2 9774
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 8700.) (Contributed by NM, 22-Feb-2011.)
Assertion
Ref Expression
tskr1om2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4584 . . 3 (𝑦 (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥)
2 r1fnon 8795 . . . . . . . . 9 𝑅1 Fn On
3 fnfun 6141 . . . . . . . . 9 (𝑅1 Fn On → Fun 𝑅1)
42, 3ax-mp 5 . . . . . . . 8 Fun 𝑅1
5 fvelima 6402 . . . . . . . 8 ((Fun 𝑅1𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
64, 5mpan 708 . . . . . . 7 (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
7 r1tr 8804 . . . . . . . . 9 Tr (𝑅1𝑦)
8 treq 4902 . . . . . . . . 9 ((𝑅1𝑦) = 𝑥 → (Tr (𝑅1𝑦) ↔ Tr 𝑥))
97, 8mpbii 223 . . . . . . . 8 ((𝑅1𝑦) = 𝑥 → Tr 𝑥)
109rexlimivw 3159 . . . . . . 7 (∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥 → Tr 𝑥)
11 trss 4905 . . . . . . 7 (Tr 𝑥 → (𝑦𝑥𝑦𝑥))
126, 10, 113syl 18 . . . . . 6 (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑥))
1312adantl 473 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑥))
14 tskr1om 9773 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
1514sseld 3735 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥𝑇))
16 tskss 9764 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑥) → 𝑦𝑇)
17163exp 1112 . . . . . . . 8 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1817adantr 472 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1915, 18syld 47 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑇)))
2019imp 444 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2113, 20syld 47 . . . 4 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2221rexlimdva 3161 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥𝑦𝑇))
231, 22syl5bi 232 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 (𝑅1 “ ω) → 𝑦𝑇))
2423ssrdv 3742 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wne 2924  wrex 3043  wss 3707  c0 4050   cuni 4580  Tr wtr 4896  cima 5261  Oncon0 5876  Fun wfun 6035   Fn wfn 6036  cfv 6041  ωcom 7222  𝑅1cr1 8790  Tarskictsk 9754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-r1 8792  df-tsk 9755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator