MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om2 Structured version   Visualization version   GIF version

Theorem tskr1om2 10190
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 9101.) (Contributed by NM, 22-Feb-2011.)
Assertion
Ref Expression
tskr1om2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4842 . . 3 (𝑦 (𝑅1 “ ω) ↔ ∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥)
2 r1fnon 9196 . . . . . . . . 9 𝑅1 Fn On
3 fnfun 6453 . . . . . . . . 9 (𝑅1 Fn On → Fun 𝑅1)
42, 3ax-mp 5 . . . . . . . 8 Fun 𝑅1
5 fvelima 6731 . . . . . . . 8 ((Fun 𝑅1𝑥 ∈ (𝑅1 “ ω)) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
64, 5mpan 688 . . . . . . 7 (𝑥 ∈ (𝑅1 “ ω) → ∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥)
7 r1tr 9205 . . . . . . . . 9 Tr (𝑅1𝑦)
8 treq 5178 . . . . . . . . 9 ((𝑅1𝑦) = 𝑥 → (Tr (𝑅1𝑦) ↔ Tr 𝑥))
97, 8mpbii 235 . . . . . . . 8 ((𝑅1𝑦) = 𝑥 → Tr 𝑥)
109rexlimivw 3282 . . . . . . 7 (∃𝑦 ∈ ω (𝑅1𝑦) = 𝑥 → Tr 𝑥)
11 trss 5181 . . . . . . 7 (Tr 𝑥 → (𝑦𝑥𝑦𝑥))
126, 10, 113syl 18 . . . . . 6 (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑥))
1312adantl 484 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑥))
14 tskr1om 10189 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
1514sseld 3966 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → 𝑥𝑇))
16 tskss 10180 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑥) → 𝑦𝑇)
17163exp 1115 . . . . . . . 8 (𝑇 ∈ Tarski → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1817adantr 483 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥𝑇 → (𝑦𝑥𝑦𝑇)))
1915, 18syld 47 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑥 ∈ (𝑅1 “ ω) → (𝑦𝑥𝑦𝑇)))
2019imp 409 . . . . 5 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2113, 20syld 47 . . . 4 (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) ∧ 𝑥 ∈ (𝑅1 “ ω)) → (𝑦𝑥𝑦𝑇))
2221rexlimdva 3284 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (∃𝑥 ∈ (𝑅1 “ ω)𝑦𝑥𝑦𝑇))
231, 22syl5bi 244 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 (𝑅1 “ ω) → 𝑦𝑇))
2423ssrdv 3973 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  wss 3936  c0 4291   cuni 4838  Tr wtr 5172  cima 5558  Oncon0 6191  Fun wfun 6349   Fn wfn 6350  cfv 6355  ωcom 7580  𝑅1cr1 9191  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193  df-tsk 10171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator