MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskinf Structured version   Visualization version   GIF version

Theorem tskinf 10191
Description: A nonempty Tarski class is infinite. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tskinf ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)

Proof of Theorem tskinf
StepHypRef Expression
1 r111 9204 . . . 4 𝑅1:On–1-1→V
2 omsson 7584 . . . 4 ω ⊆ On
3 omex 9106 . . . . 5 ω ∈ V
43f1imaen 8571 . . . 4 ((𝑅1:On–1-1→V ∧ ω ⊆ On) → (𝑅1 “ ω) ≈ ω)
51, 2, 4mp2an 690 . . 3 (𝑅1 “ ω) ≈ ω
65ensymi 8559 . 2 ω ≈ (𝑅1 “ ω)
7 simpl 485 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑇 ∈ Tarski)
8 tskr1om 10189 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
9 ssdomg 8555 . . 3 (𝑇 ∈ Tarski → ((𝑅1 “ ω) ⊆ 𝑇 → (𝑅1 “ ω) ≼ 𝑇))
107, 8, 9sylc 65 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ≼ 𝑇)
11 endomtr 8567 . 2 ((ω ≈ (𝑅1 “ ω) ∧ (𝑅1 “ ω) ≼ 𝑇) → ω ≼ 𝑇)
126, 10, 11sylancr 589 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ≼ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wne 3016  Vcvv 3494  wss 3936  c0 4291   class class class wbr 5066  cima 5558  Oncon0 6191  1-1wf1 6352  ωcom 7580  cen 8506  cdom 8507  𝑅1cr1 9191  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-r1 9193  df-tsk 10171
This theorem is referenced by:  tskpr  10192
  Copyright terms: Public domain W3C validator