MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om Structured version   Visualization version   GIF version

Theorem tskr1om 10189
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 9101.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
tskr1om ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2897 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇))
3 fveq2 6670 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2897 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1𝑦) ∈ 𝑇))
5 fveq2 6670 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2897 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇))
7 r10 9197 . . . . . . 7 (𝑅1‘∅) = ∅
8 tsk0 10185 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
97, 8eqeltrid 2917 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇)
10 tskpw 10175 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ (𝑅1𝑦) ∈ 𝑇) → 𝒫 (𝑅1𝑦) ∈ 𝑇)
11 nnon 7586 . . . . . . . . . . 11 (𝑦 ∈ ω → 𝑦 ∈ On)
12 r1suc 9199 . . . . . . . . . . 11 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1311, 12syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1413eleq1d 2897 . . . . . . . . 9 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑇))
1510, 14syl5ibr 248 . . . . . . . 8 (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇))
1615expd 418 . . . . . . 7 (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇)))
1716adantrd 494 . . . . . 6 (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇)))
182, 4, 6, 9, 17finds2 7610 . . . . 5 (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1𝑥) ∈ 𝑇))
19 eleq1 2900 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑇𝑦𝑇))
2019imbi2d 343 . . . . 5 ((𝑅1𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇)))
2118, 20syl5ibcom 247 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇)))
2221rexlimiv 3280 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇))
23 r1fnon 9196 . . . . 5 𝑅1 Fn On
24 fnfun 6453 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2523, 24ax-mp 5 . . . 4 Fun 𝑅1
26 fvelima 6731 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2725, 26mpan 688 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2822, 27syl11 33 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑇))
2928ssrdv 3973 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  wss 3936  c0 4291  𝒫 cpw 4539  cima 5558  Oncon0 6191  suc csuc 6193  Fun wfun 6349   Fn wfn 6350  cfv 6355  ωcom 7580  𝑅1cr1 9191  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193  df-tsk 10171
This theorem is referenced by:  tskr1om2  10190  tskinf  10191
  Copyright terms: Public domain W3C validator