MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmi Structured version   Visualization version   GIF version

Theorem ulmi 24185
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulmi.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
ulmi.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ulmi (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐹   𝑗,𝐺,𝑘,𝑧   𝑗,𝑀,𝑘,𝑧   𝜑,𝑗,𝑘,𝑧   𝐴,𝑗,𝑘   𝐶,𝑗,𝑘,𝑧   𝑆,𝑗,𝑘,𝑧   𝑗,𝑍
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ulmi.c . 2 (𝜑𝐶 ∈ ℝ+)
2 ulmi.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
3 ulm2.z . . . 4 𝑍 = (ℤ𝑀)
4 ulm2.m . . . 4 (𝜑𝑀 ∈ ℤ)
5 ulm2.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
6 ulm2.b . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
7 ulm2.a . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
8 ulmcl 24180 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
92, 8syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
10 ulmscl 24178 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
112, 10syl 17 . . . 4 (𝜑𝑆 ∈ V)
123, 4, 5, 6, 7, 9, 11ulm2 24184 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
132, 12mpbid 222 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)
14 breq2 4689 . . . . 5 (𝑥 = 𝐶 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝐶))
1514ralbidv 3015 . . . 4 (𝑥 = 𝐶 → (∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
1615rexralbidv 3087 . . 3 (𝑥 = 𝐶 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
1716rspcv 3336 . 2 (𝐶 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
181, 13, 17sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  cc 9972   < clt 10112  cmin 10304  cz 11415  cuz 11725  +crp 11870  abscabs 14018  𝑢culm 24175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726  df-ulm 24176
This theorem is referenced by:  ulmshftlem  24188  ulmcau  24194  ulmbdd  24197  ulmcn  24198  iblulm  24206  itgulm  24207
  Copyright terms: Public domain W3C validator