MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmi Structured version   Visualization version   GIF version

Theorem ulmi 24974
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulmi.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
ulmi.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
ulmi (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝑧,𝐹   𝑗,𝐺,𝑘,𝑧   𝑗,𝑀,𝑘,𝑧   𝜑,𝑗,𝑘,𝑧   𝐴,𝑗,𝑘   𝐶,𝑗,𝑘,𝑧   𝑆,𝑗,𝑘,𝑧   𝑗,𝑍
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulmi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5070 . . . 4 (𝑥 = 𝐶 → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝐶))
21ralbidv 3197 . . 3 (𝑥 = 𝐶 → (∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
32rexralbidv 3301 . 2 (𝑥 = 𝐶 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶))
4 ulmi.u . . 3 (𝜑𝐹(⇝𝑢𝑆)𝐺)
5 ulm2.z . . . 4 𝑍 = (ℤ𝑀)
6 ulm2.m . . . 4 (𝜑𝑀 ∈ ℤ)
7 ulm2.f . . . 4 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
8 ulm2.b . . . 4 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
9 ulm2.a . . . 4 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
10 ulmcl 24969 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
114, 10syl 17 . . . 4 (𝜑𝐺:𝑆⟶ℂ)
12 ulmscl 24967 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
134, 12syl 17 . . . 4 (𝜑𝑆 ∈ V)
145, 6, 7, 8, 9, 11, 13ulm2 24973 . . 3 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
154, 14mpbid 234 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)
16 ulmi.c . 2 (𝜑𝐶 ∈ ℝ+)
173, 15, 16rspcdva 3625 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535   < clt 10675  cmin 10870  cz 11982  cuz 12244  +crp 12390  abscabs 14593  𝑢culm 24964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-neg 10873  df-z 11983  df-uz 12245  df-ulm 24965
This theorem is referenced by:  ulmshftlem  24977  ulmcau  24983  ulmbdd  24986  ulmcn  24987  iblulm  24995  itgulm  24996
  Copyright terms: Public domain W3C validator