![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredgleordALT | Structured version Visualization version GIF version |
Description: Alternate proof for usgredgleord 26170 based on usgriedgleord 26165. In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.) (Proof shortened by AV, 5-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
usgredgleord.v | ⊢ 𝑉 = (Vtx‘𝐺) |
usgredgleord.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgredgleordALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (#‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (#‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6239 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
2 | 1 | dmex 7141 | . . . . 5 ⊢ dom (iEdg‘𝐺) ∈ V |
3 | 2 | rabex 4845 | . . . 4 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V) |
5 | usgredgleord.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | eqid 2651 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
7 | usgredgleord.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | eqid 2651 | . . . 4 ⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} | |
9 | eleq2w 2714 | . . . . 5 ⊢ (𝑒 = 𝑓 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑓)) | |
10 | 9 | cbvrabv 3230 | . . . 4 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑓 ∈ 𝐸 ∣ 𝑁 ∈ 𝑓} |
11 | eqid 2651 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)) = (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)) | |
12 | 5, 6, 7, 8, 10, 11 | usgredgedg 26167 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ↦ ((iEdg‘𝐺)‘𝑦)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
13 | 4, 12 | hasheqf1od 13182 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
14 | 7, 6 | usgriedgleord 26165 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≤ (#‘𝑉)) |
15 | 13, 14 | eqbrtrrd 4709 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (#‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ≤ (#‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 class class class wbr 4685 ↦ cmpt 4762 dom cdm 5143 ‘cfv 5926 ≤ cle 10113 #chash 13157 Vtxcvtx 25919 iEdgciedg 25920 Edgcedg 25984 USGraphcusgr 26089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-edg 25985 df-uhgr 25998 df-ushgr 25999 df-umgr 26023 df-uspgr 26090 df-usgr 26091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |