MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4s Structured version   Visualization version   GIF version

Theorem uzind4s 12309
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.)
Hypotheses
Ref Expression
uzind4s.1 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
uzind4s.2 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
Assertion
Ref Expression
uzind4s (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4s
Dummy variables 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3775 . 2 (𝑗 = 𝑀 → ([𝑗 / 𝑘]𝜑[𝑀 / 𝑘]𝜑))
2 sbequ 2090 . 2 (𝑗 = 𝑚 → ([𝑗 / 𝑘]𝜑 ↔ [𝑚 / 𝑘]𝜑))
3 dfsbcq2 3775 . 2 (𝑗 = (𝑚 + 1) → ([𝑗 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
4 dfsbcq2 3775 . 2 (𝑗 = 𝑁 → ([𝑗 / 𝑘]𝜑[𝑁 / 𝑘]𝜑))
5 uzind4s.1 . 2 (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑)
6 nfv 1915 . . . 4 𝑘 𝑚 ∈ (ℤ𝑀)
7 nfs1v 2160 . . . . 5 𝑘[𝑚 / 𝑘]𝜑
8 nfsbc1v 3792 . . . . 5 𝑘[(𝑚 + 1) / 𝑘]𝜑
97, 8nfim 1897 . . . 4 𝑘([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)
106, 9nfim 1897 . . 3 𝑘(𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
11 eleq1w 2895 . . . 4 (𝑘 = 𝑚 → (𝑘 ∈ (ℤ𝑀) ↔ 𝑚 ∈ (ℤ𝑀)))
12 sbequ12 2253 . . . . 5 (𝑘 = 𝑚 → (𝜑 ↔ [𝑚 / 𝑘]𝜑))
13 oveq1 7163 . . . . . 6 (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1))
1413sbceq1d 3777 . . . . 5 (𝑘 = 𝑚 → ([(𝑘 + 1) / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
1512, 14imbi12d 347 . . . 4 (𝑘 = 𝑚 → ((𝜑[(𝑘 + 1) / 𝑘]𝜑) ↔ ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑)))
1611, 15imbi12d 347 . . 3 (𝑘 = 𝑚 → ((𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑)) ↔ (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))))
17 uzind4s.2 . . 3 (𝑘 ∈ (ℤ𝑀) → (𝜑[(𝑘 + 1) / 𝑘]𝜑))
1810, 16, 17chvarfv 2242 . 2 (𝑚 ∈ (ℤ𝑀) → ([𝑚 / 𝑘]𝜑[(𝑚 + 1) / 𝑘]𝜑))
191, 2, 3, 4, 5, 18uzind4 12307 1 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑘]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2069  wcel 2114  [wsbc 3772  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540  cz 11982  cuz 12244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator