MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedglem Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedglem 26305
Description: Lemma for vtxdushgrfvedg 26306 and vtxdusgrfvedg 26307. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) TODO-AV: proof can be shortened by using bj-eleq2w 32547, after it is moved to main.set.
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedglem ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (#‘{𝑒𝐸𝑈𝑒}))
Distinct variable groups:   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖   𝑈,𝑒,𝑖   𝑒,𝑉,𝑖

Proof of Theorem vtxdushgrfvedglem
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6168 . . . . 5 (iEdg‘𝐺) ∈ V
21dmex 7061 . . . 4 dom (iEdg‘𝐺) ∈ V
32rabex 4783 . . 3 {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ∈ V
43a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ∈ V)
5 vtxdushgrfvedg.e . . 3 𝐸 = (Edg‘𝐺)
6 eqid 2621 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
7 vtxdushgrfvedg.v . . 3 𝑉 = (Vtx‘𝐺)
8 eqid 2621 . . 3 {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}
9 eleq2 2687 . . . 4 (𝑒 = 𝑐 → (𝑈𝑒𝑈𝑐))
109cbvrabv 3189 . . 3 {𝑒𝐸𝑈𝑒} = {𝑐𝐸𝑈𝑐}
11 eqid 2621 . . 3 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥))
125, 6, 7, 8, 10, 11ushgredgedg 26048 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}–1-1-onto→{𝑒𝐸𝑈𝑒})
134, 12hasheqf1od 13100 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (#‘{𝑒𝐸𝑈𝑒}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2912  Vcvv 3190  cmpt 4683  dom cdm 5084  cfv 5857  #chash 13073  Vtxcvtx 25808  iEdgciedg 25809  Edgcedg 25873   USHGraph cushgr 25882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-hash 13074  df-edg 25874  df-uhgr 25883  df-ushgr 25884
This theorem is referenced by:  vtxdushgrfvedg  26306  vtxdusgrfvedg  26307
  Copyright terms: Public domain W3C validator