MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk1p Structured version   Visualization version   GIF version

Theorem cnmptk1p 22295
Description: The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1p.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1p.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1p.n (𝜑𝐾 ∈ 𝑛-Locally Comp)
cnmptk1p.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptk1p.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
cnmptk1p.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptk1p (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)   𝐽(𝑦)   𝐾(𝑦)   𝐿(𝑦)   𝑍(𝑥)

Proof of Theorem cnmptk1p
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptk1p.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptk1p.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmptk1p.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 cnmptk1p.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6 cnf2 21859 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋𝑌)
73, 4, 5, 6syl3anc 1367 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑌)
87fvmptelrn 6879 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
92eleq1d 2899 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑍𝐶𝑍))
104adantr 483 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
11 cnmptk1p.l . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘𝑍))
1211adantr 483 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
13 cnmptk1p.n . . . . . . . . . . 11 (𝜑𝐾 ∈ 𝑛-Locally Comp)
14 nllytop 22083 . . . . . . . . . . 11 (𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
16 topontop 21523 . . . . . . . . . . 11 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
1711, 16syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ Top)
18 eqid 2823 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1918xkotopon 22210 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
2015, 17, 19syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
21 cnmptk1p.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
22 cnf2 21859 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
233, 20, 21, 22syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2423fvmptelrn 6879 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
25 cnf2 21859 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
2610, 12, 24, 25syl3anc 1367 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
271fmpt 6876 . . . . . 6 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2826, 27sylibr 236 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
299, 28, 8rspcdva 3627 . . . 4 ((𝜑𝑥𝑋) → 𝐶𝑍)
301, 2, 8, 29fvmptd3 6793 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3130mpteq2dva 5163 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
32 eqid 2823 . . . . 5 (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿)
33 toponuni 21524 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
344, 33syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
35 mpoeq12 7229 . . . . 5 (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
3632, 34, 35sylancr 589 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
37 eqid 2823 . . . . . 6 𝐾 = 𝐾
38 eqid 2823 . . . . . 6 (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧))
3937, 38xkofvcn 22294 . . . . 5 ((𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
4013, 17, 39syl2anc 586 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
4136, 40eqeltrd 2915 . . 3 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
42 fveq1 6671 . . . 4 (𝑓 = (𝑦𝑌𝐴) → (𝑓𝑧) = ((𝑦𝑌𝐴)‘𝑧))
43 fveq2 6672 . . . 4 (𝑧 = 𝐵 → ((𝑦𝑌𝐴)‘𝑧) = ((𝑦𝑌𝐴)‘𝐵))
4442, 43sylan9eq 2878 . . 3 ((𝑓 = (𝑦𝑌𝐴) ∧ 𝑧 = 𝐵) → (𝑓𝑧) = ((𝑦𝑌𝐴)‘𝐵))
453, 21, 5, 20, 4, 41, 44cnmpt12 22277 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
4631, 45eqeltrrd 2916 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140   cuni 4840  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  Topctop 21503  TopOnctopon 21520   Cn ccn 21834  Compccmp 21996  𝑛-Locally cnlly 22075   ×t ctx 22170  ko cxko 22171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-pt 16720  df-top 21504  df-topon 21521  df-bases 21556  df-ntr 21630  df-nei 21708  df-cn 21837  df-cnp 21838  df-cmp 21997  df-nlly 22077  df-tx 22172  df-xko 22173
This theorem is referenced by:  xkohmeo  22425
  Copyright terms: Public domain W3C validator