Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrdifh Structured version   Visualization version   GIF version

Theorem xrdifh 30503
Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.)
Hypothesis
Ref Expression
xrdifh.1 𝐴 ∈ ℝ*
Assertion
Ref Expression
xrdifh (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)

Proof of Theorem xrdifh
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 biortn 934 . . . . . 6 (𝑥 ∈ ℝ* → ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
2 pnfge 12526 . . . . . . . . 9 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
32notnotd 146 . . . . . . . 8 (𝑥 ∈ ℝ* → ¬ ¬ 𝑥 ≤ +∞)
4 biorf 933 . . . . . . . 8 (¬ ¬ 𝑥 ≤ +∞ → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
53, 4syl 17 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥)))
6 orcom 866 . . . . . . 7 ((¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ≤ +∞ ∨ ¬ 𝐴𝑥))
75, 6syl6bbr 291 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝐴𝑥 ↔ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
8 xrdifh.1 . . . . . . . . . 10 𝐴 ∈ ℝ*
9 pnfxr 10695 . . . . . . . . . 10 +∞ ∈ ℝ*
10 elicc1 12783 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞)))
118, 9, 10mp2an 690 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]+∞) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
1211notbii 322 . . . . . . . 8 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞))
13 3ianor 1103 . . . . . . . 8 (¬ (𝑥 ∈ ℝ*𝐴𝑥𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))
14 3orass 1086 . . . . . . . 8 ((¬ 𝑥 ∈ ℝ* ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1512, 13, 143bitri 299 . . . . . . 7 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞)))
1615a1i 11 . . . . . 6 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ (¬ 𝑥 ∈ ℝ* ∨ (¬ 𝐴𝑥 ∨ ¬ 𝑥 ≤ +∞))))
171, 7, 163bitr4rd 314 . . . . 5 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ ¬ 𝐴𝑥))
18 xrltnle 10708 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
198, 18mpan2 689 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
2017, 19bitr4d 284 . . . 4 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ (𝐴[,]+∞) ↔ 𝑥 < 𝐴))
2120pm5.32i 577 . . 3 ((𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
22 eldif 3946 . . 3 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ (𝑥 ∈ ℝ* ∧ ¬ 𝑥 ∈ (𝐴[,]+∞)))
23 3anass 1091 . . . 4 ((𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
24 mnfxr 10698 . . . . 5 -∞ ∈ ℝ*
25 elico1 12782 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴)))
2624, 8, 25mp2an 690 . . . 4 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ* ∧ -∞ ≤ 𝑥𝑥 < 𝐴))
27 mnfle 12530 . . . . . 6 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
2827biantrurd 535 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 < 𝐴 ↔ (-∞ ≤ 𝑥𝑥 < 𝐴)))
2928pm5.32i 577 . . . 4 ((𝑥 ∈ ℝ*𝑥 < 𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ ≤ 𝑥𝑥 < 𝐴)))
3023, 26, 293bitr4i 305 . . 3 (𝑥 ∈ (-∞[,)𝐴) ↔ (𝑥 ∈ ℝ*𝑥 < 𝐴))
3121, 22, 303bitr4i 305 . 2 (𝑥 ∈ (ℝ* ∖ (𝐴[,]+∞)) ↔ 𝑥 ∈ (-∞[,)𝐴))
3231eqriv 2818 1 (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  cdif 3933   class class class wbr 5066  (class class class)co 7156  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  [,)cico 12741  [,]cicc 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-ico 12745  df-icc 12746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator