Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xreceu Structured version   Visualization version   GIF version

Theorem xreceu 30598
Description: Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Assertion
Ref Expression
xreceu ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xreceu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 10685 . . . 4 ℝ ⊆ ℝ*
2 xrecex 30596 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1)
323adant1 1126 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1)
4 ssrexv 4034 . . . 4 (ℝ ⊆ ℝ* → (∃𝑦 ∈ ℝ (𝐵 ·e 𝑦) = 1 → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1))
51, 3, 4mpsyl 68 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1)
6 simprl 769 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝑦 ∈ ℝ*)
7 simpll 765 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐴 ∈ ℝ*)
86, 7xmulcld 12696 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝑦 ·e 𝐴) ∈ ℝ*)
9 oveq1 7163 . . . . . . . 8 ((𝐵 ·e 𝑦) = 1 → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴))
109ad2antll 727 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (1 ·e 𝐴))
11 simplr 767 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ)
1211rexrd 10691 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → 𝐵 ∈ ℝ*)
13 xmulass 12681 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑦 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴)))
1412, 6, 7, 13syl3anc 1367 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ((𝐵 ·e 𝑦) ·e 𝐴) = (𝐵 ·e (𝑦 ·e 𝐴)))
15 xmulid2 12674 . . . . . . . 8 (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴)
167, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (1 ·e 𝐴) = 𝐴)
1710, 14, 163eqtr3d 2864 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴)
18 oveq2 7164 . . . . . . . 8 (𝑥 = (𝑦 ·e 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e (𝑦 ·e 𝐴)))
1918eqeq1d 2823 . . . . . . 7 (𝑥 = (𝑦 ·e 𝐴) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴))
2019rspcev 3623 . . . . . 6 (((𝑦 ·e 𝐴) ∈ ℝ* ∧ (𝐵 ·e (𝑦 ·e 𝐴)) = 𝐴) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
218, 17, 20syl2anc 586 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ* ∧ (𝐵 ·e 𝑦) = 1)) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
2221rexlimdvaa 3285 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1 → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23223adant3 1128 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (∃𝑦 ∈ ℝ* (𝐵 ·e 𝑦) = 1 → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
245, 23mpd 15 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
25 eqtr3 2843 . . . . . . 7 (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦))
26 simp1 1132 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑥 ∈ ℝ*)
27 simp2 1133 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝑦 ∈ ℝ*)
28 simp3l 1197 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
29 simp3r 1198 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
3026, 27, 28, 29xmulcand 30597 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐵 ·e 𝑥) = (𝐵 ·e 𝑦) ↔ 𝑥 = 𝑦))
3125, 30syl5ib 246 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
32313expa 1114 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
3332expcom 416 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
34333adant1 1126 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3534ralrimivv 3190 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦))
36 oveq2 7164 . . . 4 (𝑥 = 𝑦 → (𝐵 ·e 𝑥) = (𝐵 ·e 𝑦))
3736eqeq1d 2823 . . 3 (𝑥 = 𝑦 → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑦) = 𝐴))
3837reu4 3722 . 2 (∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (((𝐵 ·e 𝑥) = 𝐴 ∧ (𝐵 ·e 𝑦) = 𝐴) → 𝑥 = 𝑦)))
3924, 35, 38sylanbrc 585 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  wss 3936  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538  *cxr 10674   ·e cxmu 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-xneg 12508  df-xmul 12510
This theorem is referenced by:  xdivcld  30599  xdivmul  30601  rexdiv  30602  xrmulc1cn  31173
  Copyright terms: Public domain W3C validator