MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn Structured version   Visualization version   GIF version

Theorem zorn 10504
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. This theorem is equivalent to the Axiom of Choice. Theorem 6M of [Enderton] p. 151. See zorn2 10503 for a version with general partial orderings. (Contributed by NM, 12-Aug-2004.)
Hypothesis
Ref Expression
zornn0.1 𝐴 ∈ V
Assertion
Ref Expression
zorn (∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem zorn
StepHypRef Expression
1 zornn0.1 . . 3 𝐴 ∈ V
2 numth3 10467 . . 3 (𝐴 ∈ V → 𝐴 ∈ dom card)
31, 2ax-mp 5 . 2 𝐴 ∈ dom card
4 zorng 10501 . 2 ((𝐴 ∈ dom card ∧ ∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
53, 4mpan 686 1 (∀𝑧((𝑧𝐴 ∧ [] Or 𝑧) → 𝑧𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wal 1537  wcel 2104  wral 3059  wrex 3068  Vcvv 3472  wss 3947  wpss 3948   cuni 4907   Or wor 5586  dom cdm 5675   [] crpss 7714  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-rpss 7715  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-en 8942  df-card 9936  df-ac 10113
This theorem is referenced by:  alexsubALTlem2  23772
  Copyright terms: Public domain W3C validator