Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > mpd | GIF version |
Description: Modus ponens. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
mp.1 | ⊢ T:∗ |
mp.2 | ⊢ R⊧S |
mp.3 | ⊢ R⊧[S ⇒ T] |
Ref | Expression |
---|---|
mpd | ⊢ R⊧T |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp.2 | . . . 4 ⊢ R⊧S | |
2 | mp.3 | . . . . 5 ⊢ R⊧[S ⇒ T] | |
3 | 1 | ax-cb1 29 | . . . . . 6 ⊢ R:∗ |
4 | 1 | ax-cb2 30 | . . . . . . 7 ⊢ S:∗ |
5 | mp.1 | . . . . . . 7 ⊢ T:∗ | |
6 | 4, 5 | imval 146 | . . . . . 6 ⊢ ⊤⊧[[S ⇒ T] = [[S ∧ T] = S]] |
7 | 3, 6 | a1i 28 | . . . . 5 ⊢ R⊧[[S ⇒ T] = [[S ∧ T] = S]] |
8 | 2, 7 | mpbi 82 | . . . 4 ⊢ R⊧[[S ∧ T] = S] |
9 | 1, 8 | mpbir 87 | . . 3 ⊢ R⊧[S ∧ T] |
10 | 4, 5 | dfan2 154 | . . . 4 ⊢ ⊤⊧[[S ∧ T] = (S, T)] |
11 | 3, 10 | a1i 28 | . . 3 ⊢ R⊧[[S ∧ T] = (S, T)] |
12 | 9, 11 | mpbi 82 | . 2 ⊢ R⊧(S, T) |
13 | 12 | simprd 38 | 1 ⊢ R⊧T |
Colors of variables: type var term |
Syntax hints: ∗hb 3 = ke 7 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ∧ tan 119 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-an 128 df-im 129 |
This theorem is referenced by: imp 157 notval2 159 notnot1 160 ecase 163 olc 164 orc 165 exlimdv2 166 ax4e 168 exlimd 183 ac 197 exmid 199 ax2 204 axmp 206 ax5 207 ax11 214 |
Copyright terms: Public domain | W3C validator |