Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > cbv | GIF version |
Description: Change bound variables in a lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
cbv.1 | ⊢ A:β |
cbv.2 | ⊢ [x:α = y:α]⊧[A = B] |
Ref | Expression |
---|---|
cbv | ⊢ ⊤⊧[λx:α A = λy:α B] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv.1 | . 2 ⊢ A:β | |
2 | wv 64 | . . 3 ⊢ z:α:α | |
3 | 1, 2 | ax-17 105 | . 2 ⊢ ⊤⊧[(λy:α Az:α) = A] |
4 | cbv.2 | . . . 4 ⊢ [x:α = y:α]⊧[A = B] | |
5 | 1, 4 | eqtypi 78 | . . 3 ⊢ B:β |
6 | 5, 2 | ax-17 105 | . 2 ⊢ ⊤⊧[(λx:α Bz:α) = B] |
7 | 1, 3, 6, 4 | cbvf 179 | 1 ⊢ ⊤⊧[λx:α A = λy:α B] |
Colors of variables: type var term |
Syntax hints: tv 1 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 |
This theorem is referenced by: ax10 213 |
Copyright terms: Public domain | W3C validator |