Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ceq2 | GIF version |
Description: Equality theorem for combination. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
ceq12.1 | ⊢ F:(α → β) |
ceq12.2 | ⊢ A:α |
ceq2.3 | ⊢ R⊧[A = B] |
Ref | Expression |
---|---|
ceq2 | ⊢ R⊧[(FA) = (FB)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceq12.1 | . 2 ⊢ F:(α → β) | |
2 | ceq12.2 | . 2 ⊢ A:α | |
3 | ceq2.3 | . . . 4 ⊢ R⊧[A = B] | |
4 | 3 | ax-cb1 29 | . . 3 ⊢ R:∗ |
5 | 4, 1 | eqid 83 | . 2 ⊢ R⊧[F = F] |
6 | 1, 2, 5, 3 | ceq12 88 | 1 ⊢ R⊧[(FA) = (FB)] |
Colors of variables: type var term |
Syntax hints: → ht 2 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: eqtri 95 clf 115 exval 143 euval 144 orval 147 exlimdv2 166 exlimdv 167 ax4e 168 cbvf 179 leqf 181 exlimd 183 ac 197 exmid 199 exnal 201 ax9 212 ax10 213 ax11 214 ax13 216 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |