Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ceq1 | GIF version |
Description: Equality theorem for combination. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
ceq12.1 | ⊢ F:(α → β) |
ceq12.2 | ⊢ A:α |
ceq12.3 | ⊢ R⊧[F = T] |
Ref | Expression |
---|---|
ceq1 | ⊢ R⊧[(FA) = (TA)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceq12.1 | . 2 ⊢ F:(α → β) | |
2 | ceq12.2 | . 2 ⊢ A:α | |
3 | ceq12.3 | . 2 ⊢ R⊧[F = T] | |
4 | 3 | ax-cb1 29 | . . 3 ⊢ R:∗ |
5 | 4, 2 | eqid 83 | . 2 ⊢ R⊧[A = A] |
6 | 1, 2, 3, 5 | ceq12 88 | 1 ⊢ R⊧[(FA) = (TA)] |
Colors of variables: type var term |
Syntax hints: → ht 2 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbxfrf 107 ovl 117 alval 142 exval 143 euval 144 notval 145 ax4g 149 dfan2 154 eta 178 ac 197 ax14 217 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |