ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi Unicode version

Theorem 0npi 7254
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi  |-  -.  (/)  e.  N.

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2165 . 2  |-  (/)  =  (/)
2 elni 7249 . . . 4  |-  ( (/)  e.  N.  <->  ( (/)  e.  om  /\  (/)  =/=  (/) ) )
32simprbi 273 . . 3  |-  ( (/)  e.  N.  ->  (/)  =/=  (/) )
43necon2bi 2391 . 2  |-  ( (/)  =  (/)  ->  -.  (/)  e.  N. )
51, 4ax-mp 5 1  |-  -.  (/)  e.  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1343    e. wcel 2136    =/= wne 2336   (/)c0 3409   omcom 4567   N.cnpi 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-sn 3582  df-ni 7245
This theorem is referenced by:  elni2  7255
  Copyright terms: Public domain W3C validator