ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi Unicode version

Theorem 0npi 7408
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi  |-  -.  (/)  e.  N.

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2204 . 2  |-  (/)  =  (/)
2 elni 7403 . . . 4  |-  ( (/)  e.  N.  <->  ( (/)  e.  om  /\  (/)  =/=  (/) ) )
32simprbi 275 . . 3  |-  ( (/)  e.  N.  ->  (/)  =/=  (/) )
43necon2bi 2430 . 2  |-  ( (/)  =  (/)  ->  -.  (/)  e.  N. )
51, 4ax-mp 5 1  |-  -.  (/)  e.  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1372    e. wcel 2175    =/= wne 2375   (/)c0 3459   omcom 4636   N.cnpi 7367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-sn 3638  df-ni 7399
This theorem is referenced by:  elni2  7409
  Copyright terms: Public domain W3C validator