ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi Unicode version

Theorem 0npi 7380
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi  |-  -.  (/)  e.  N.

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2196 . 2  |-  (/)  =  (/)
2 elni 7375 . . . 4  |-  ( (/)  e.  N.  <->  ( (/)  e.  om  /\  (/)  =/=  (/) ) )
32simprbi 275 . . 3  |-  ( (/)  e.  N.  ->  (/)  =/=  (/) )
43necon2bi 2422 . 2  |-  ( (/)  =  (/)  ->  -.  (/)  e.  N. )
51, 4ax-mp 5 1  |-  -.  (/)  e.  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2167    =/= wne 2367   (/)c0 3450   omcom 4626   N.cnpi 7339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-sn 3628  df-ni 7371
This theorem is referenced by:  elni2  7381
  Copyright terms: Public domain W3C validator