ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2bi Unicode version

Theorem necon2bi 2390
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
necon2bi  |-  ( A  =  B  ->  -.  ph )

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3  |-  ( ph  ->  A  =/=  B )
21neneqd 2356 . 2  |-  ( ph  ->  -.  A  =  B )
32con2i 617 1  |-  ( A  =  B  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    =/= wne 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2336
This theorem is referenced by:  minel  3469  rzal  3505  difsnb  3715  fin0  6847  0npi  7250  0nsr  7686  renfdisj  7954  nltpnft  9746  ngtmnft  9749  xrrebnd  9751  hashnncl  10705  rennim  10940  pceq0  12249
  Copyright terms: Public domain W3C validator