| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2bi | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 |
|
| Ref | Expression |
|---|---|
| necon2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 |
. . 3
| |
| 2 | 1 | neneqd 2388 |
. 2
|
| 3 | 2 | con2i 628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: minel 3512 rzal 3548 difsnb 3765 fin0 6946 0npi 7380 0nsr 7816 renfdisj 8086 nltpnft 9889 ngtmnft 9892 xrrebnd 9894 hashnncl 10887 rennim 11167 pceq0 12491 |
| Copyright terms: Public domain | W3C validator |