| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2bi | Unicode version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 |
|
| Ref | Expression |
|---|---|
| necon2bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 |
. . 3
| |
| 2 | 1 | neneqd 2421 |
. 2
|
| 3 | 2 | con2i 630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: minel 3553 rzal 3589 difsnb 3810 fin0 7043 0npi 7496 0nsr 7932 renfdisj 8202 nltpnft 10006 ngtmnft 10009 xrrebnd 10011 hashnncl 11012 rennim 11508 pceq0 12840 |
| Copyright terms: Public domain | W3C validator |