ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex Unicode version

Theorem niex 7499
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex  |-  N.  e.  _V

Proof of Theorem niex
StepHypRef Expression
1 omex 4685 . 2  |-  om  e.  _V
2 df-ni 7491 . . 3  |-  N.  =  ( om  \  { (/) } )
3 difss 3330 . . 3  |-  ( om 
\  { (/) } ) 
C_  om
42, 3eqsstri 3256 . 2  |-  N.  C_  om
51, 4ssexi 4222 1  |-  N.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    \ cdif 3194   (/)c0 3491   {csn 3666   omcom 4682   N.cnpi 7459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-int 3924  df-iom 4683  df-ni 7491
This theorem is referenced by:  enqex  7547  nqex  7550  enq0ex  7626  nq0ex  7627
  Copyright terms: Public domain W3C validator