ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex Unicode version

Theorem niex 7113
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex  |-  N.  e.  _V

Proof of Theorem niex
StepHypRef Expression
1 omex 4502 . 2  |-  om  e.  _V
2 df-ni 7105 . . 3  |-  N.  =  ( om  \  { (/) } )
3 difss 3197 . . 3  |-  ( om 
\  { (/) } ) 
C_  om
42, 3eqsstri 3124 . 2  |-  N.  C_  om
51, 4ssexi 4061 1  |-  N.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   _Vcvv 2681    \ cdif 3063   (/)c0 3358   {csn 3522   omcom 4499   N.cnpi 7073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-dif 3068  df-in 3072  df-ss 3079  df-int 3767  df-iom 4500  df-ni 7105
This theorem is referenced by:  enqex  7161  nqex  7164  enq0ex  7240  nq0ex  7241
  Copyright terms: Public domain W3C validator