Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > niex | Unicode version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
niex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4552 | . 2 | |
2 | df-ni 7224 | . . 3 | |
3 | difss 3233 | . . 3 | |
4 | 2, 3 | eqsstri 3160 | . 2 |
5 | 1, 4 | ssexi 4102 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cvv 2712 cdif 3099 c0 3394 csn 3560 com 4549 cnpi 7192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-int 3808 df-iom 4550 df-ni 7224 |
This theorem is referenced by: enqex 7280 nqex 7283 enq0ex 7359 nq0ex 7360 |
Copyright terms: Public domain | W3C validator |