ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex Unicode version

Theorem niex 7374
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex  |-  N.  e.  _V

Proof of Theorem niex
StepHypRef Expression
1 omex 4626 . 2  |-  om  e.  _V
2 df-ni 7366 . . 3  |-  N.  =  ( om  \  { (/) } )
3 difss 3286 . . 3  |-  ( om 
\  { (/) } ) 
C_  om
42, 3eqsstri 3212 . 2  |-  N.  C_  om
51, 4ssexi 4168 1  |-  N.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760    \ cdif 3151   (/)c0 3447   {csn 3619   omcom 4623   N.cnpi 7334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-int 3872  df-iom 4624  df-ni 7366
This theorem is referenced by:  enqex  7422  nqex  7425  enq0ex  7501  nq0ex  7502
  Copyright terms: Public domain W3C validator