ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex Unicode version

Theorem niex 7396
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex  |-  N.  e.  _V

Proof of Theorem niex
StepHypRef Expression
1 omex 4630 . 2  |-  om  e.  _V
2 df-ni 7388 . . 3  |-  N.  =  ( om  \  { (/) } )
3 difss 3290 . . 3  |-  ( om 
\  { (/) } ) 
C_  om
42, 3eqsstri 3216 . 2  |-  N.  C_  om
51, 4ssexi 4172 1  |-  N.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763    \ cdif 3154   (/)c0 3451   {csn 3623   omcom 4627   N.cnpi 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-int 3876  df-iom 4628  df-ni 7388
This theorem is referenced by:  enqex  7444  nqex  7447  enq0ex  7523  nq0ex  7524
  Copyright terms: Public domain W3C validator