ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex Unicode version

Theorem niex 7253
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex  |-  N.  e.  _V

Proof of Theorem niex
StepHypRef Expression
1 omex 4570 . 2  |-  om  e.  _V
2 df-ni 7245 . . 3  |-  N.  =  ( om  \  { (/) } )
3 difss 3248 . . 3  |-  ( om 
\  { (/) } ) 
C_  om
42, 3eqsstri 3174 . 2  |-  N.  C_  om
51, 4ssexi 4120 1  |-  N.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726    \ cdif 3113   (/)c0 3409   {csn 3576   omcom 4567   N.cnpi 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-int 3825  df-iom 4568  df-ni 7245
This theorem is referenced by:  enqex  7301  nqex  7304  enq0ex  7380  nq0ex  7381
  Copyright terms: Public domain W3C validator